
Advanced Computational Methods for Monte Carlo Calculations AMC-00 - 1LA-UR-18-20247

Forrest B. Brown

National Laboratory Professor, UNM-NE
Senior R&D Scientist, Monte Carlo, LANL

Advanced Computational Methods
for Monte Carlo Calculations

NE-515-006
Spring 2018

LA-UR-18-20247

Advanced Computational Methods for Monte Carlo Calculations AMC-00 - 2LA-UR-18-20247

Abstract

Advanced Computational Methods for Monte Carlo Calculations
Prof. Forrest Brown

This course is intended for graduate students who already have a basic understanding of Monte
Carlo methods. It focuses on advanced topics that may be needed for thesis research, for
developing new state-of-the-art methods, or for working with modern production Monte Carlo
codes. Topics to be covered include:

– Linear Boltzmann transport equation & integral form
– Optimal random sampling from piecewise-linear PDFs
– Parallel & vector Monte Carlo algorithms
– Green's functions, the fission matrix, and linear integral operators
– Adjoint-weighted integrals & sensitivity analysis
– Precision & roundoff considerations, IEEE-floating point
– Bit operations & random number generators
– Detailed workings of delta-tracking & 3D CSG

Thorough knowledge of some programming language is required (e.g., C++, Fortran-2003, perl,
python). A previous course in transport theory is recommended. Students are assumed to be
familiar with the material in UNM NE-462 / NE-562 (see F. Brown, "Monte Carlo Techniques for
Nuclear Systems", LA-UR-16-29043, in the Reference Collection at the mcnp.lanl.gov website)
Meet: 3 hours/week

Advanced Computational Methods for Monte Carlo Calculations AMC-00 - 3LA-UR-18-20247

Lecture Topics

Transport Theory & Physics
AMC-10 Linear Boltzmann Transport Equation & Integral Form
AMC-11 Adjoints & Green's Functions
AMC-12 Fission Matrix Method for MC Criticality Problems
AMC-13 Continuously Varying Materials & Tallies

Random Numbers & Sampling
AMC-20 Random Number Generators & RNG Testing
AMC-21 Random Sampling – Beyond the Basics
AMC-22 Optimal Random Sampling from Piecewise-Linear PDFs
AMC-23 Permutations, Sets of N-from-M, & Counting-sorts
AMC-24 Some Ideas for a New Random Number Generator

Code Development
AMC-30 Monte Carlo Codes – Basic Algorithm & Structure
AMC-31 Code Development – How to Time & Test
AMC-32 Vector & Parallel Monte Carlo
AMC-33 Optimizing Monte Carlo Calculations

Advanced Computational Methods for Monte Carlo Calculations AMC-00 - 4LA-UR-18-20247

References AMC-01 - 1LA-UR-18-20247

Forrest B. Brown

National Laboratory Professor, UNM-NE
Senior R&D Scientist, Monte Carlo, LANL

References
Advanced

Computational
Methods for
Monte Carlo
Calculations

References AMC-01 - 2LA-UR-18-20247

References - Transport Theory

– Bell & Glasstone, Nuclear Reactor Theory (1970) ★
This is one of the all-time classics for transport theory & reactor physics. Very readable at the grad-student &
professional level. The focus is entirely on neutron transport. Covers the neutron transport equation, 1-speed
transport theory, numerical methods (Pn & diffusion), multigroup methods, discrete ordinates methods, the adjoint
equation, perturbation theory, variational methods, neutron thermalization, resonance absorption, reactor dynamics,
& more. Hard-copy book can be ordered through the ANS bookstore at ans.org. PDF-copy readily available.

– Ganapol, Analytical Benchmarks for Nuclear Engineering Applications, OECD-NEA publication (2008)★
This is a nice book to have, even if you don't care about the analytical benchmark solutions. The first 25 pages
provide a concise overview of the neutron Boltzmann transport equation. PDF-copy readily available.

– Cacuci (Ed), Handbook of Nuclear Engineering, Chapter 5 (by Prinja & Larsen) (2010)★
This is the transport theory section of the recent edition of the Handbook of Nuclear Engineering. With 116 pages, it
is fairly complete, but a bit pedantic. PDF-copy available.

– Duderstadt & Martin, Transport Theory (1979)★
Another classic reference. Huge amount of material, including both theory & numerical methods, PDF-copy
available.

– MMR Williams, Mathematical Methods in Particle Transport Theory (1971)★
PDF-copy available.

– E.E. Lewis and W.F. Miller, Jr., Computational Methods of Neutron Transport, ANS (1993)

References AMC-01 - 3LA-UR-18-20247

References – Monte Carlo

• Available in the Reference Collection at mcnp.lanl.gov
– F.B. Brown, "Monte Carlo Techniques for Nuclear Systems - Theory Lectures", LA-UR-16-29043, (2016)★

Lecture notes on theory for the Monte Carlo class that is taught to senior undergraduate & graduate students in the
Nuclear Engineering Department at the University of New Mexico. For undergraduate students, this 1-semester
class is required for graduation. There are 600 slides covering all of the basics for Monte Carlo particle transport &
some advanced material. Portions of these notes are also used in the MCNP Criticality Class given at LANL. (2016)

– X-5 Monte Carlo Team, “MCNP - A General N-Particle Transport Code, Version 5” Volume I: Overview and
Theory, LA-UR-03-1987 (2003, updated 2005) ★

– L.L. Carter and E.D. Cashwell, Particle Transport Simulation with the Monte Carlo Method, ERDA Critical
Review Series, TID-26607, National Technical Information Service, Springfield MA (1975). ★

– A. Sood, "The Monte Carlo Method and MCNP - A Brief Review of Our 40 Year History", Int. Topical Meeting
on Industrial Radiation and Radioisotope Measurement - Aplications Conference, Chicago IL, July, LA-UR-
17-26533 (2017). ★

– E.D. Cashwell and C.J. Everett, A Practical Manual on the Monte Carlo Method for Random Walk Problems,
Pergamon Press, London LA-2120, (1959). ★

– H. Kahn, "Applications of Monte Carlo," Rand Corporation, Santa Monica, CA (1954), AECU-3259 ★
– R.C. Gast and N.R. Candelore, "Monte Carlo Eigenfunction Strategies and Uncertainties," in Proc. NEACRP

Meeting of a Monte Carlo Study Group, ANL-75-2, Argonne National Laboratory, Argonne, IL (1974).
– E.M. Gelbard and R.E. Prael, "Monte Carlo Work at Argonne National Laboratory", in Proc. NEACRP

Meeting of a Monte Carlo Study Group, ANL-75-2, Argonne National Laboratory, Argonne, IL (1974).

• Other
– Lux & L. Koblinger, Monte Carlo Particle Transport Methods: Neutron and Photon Calculations, CRC Press,

Boston (1991). ★

References AMC-01 - 4LA-UR-18-20247

References – Random Numbers & Random Sampling

– D. E. Knuth, The Art of Computer Programming, Vol. 2: Semi-numerical Algorithms, 3rd Edition, Addison-
Wesley, Reading, MA (1998).

– L. Devroye, Non-Uniform Random Variate Generation, Springer-Verlag, NY (1986). ★

– J. von Neumann, "Various Techniques Used in Conjunction with Random Digits," J. Res. Nat. Bur. Stand.
Appl. Math Series 3, 36-38 (1951). ★

– C. J. Everett and E. D. Cashwell, "A Third Monte Carlo Sampler," LA9721-MS, Los Alamos National
Laboratory, Los Alamos, NM (1983). ★

– H. Kahn, "Applications of Monte Carlo," AECU-3259, Rand Corporation, Santa Monica, CA (1954). ★

– F.B. Brown, “Random Number Generation with Arbitrary Strides”, Trans. Am. Nucl. Soc. (Dec 1994)

– F.B. Brown & Y. Nagaya, “The MCNP5 Random Number Generator”, Trans. Am. Nucl. Soc. [also, LA-UR-02-
3782] (November, 2002)★

– Y. Nagaya & F.B. Brown, "Testing MCNP Random Number Generators", LANL report on testing MCNP5 RN
generators, work performed in 2002 for original MCNP5 version, LA-UR-11-04858 (2011)★

NE-515-006 Course Information AMC-02 - 1LA-UR-18-20247

Forrest B. Brown

National Laboratory Professor, UNM-NE
Senior R&D Scientist, Monte Carlo, LANL

NE-515-006
Course Information

NE-515-006
Spring 2018

NE-515-006 Course Information AMC-02 - 2

Advanced Computational Methods for Monte Carlo Calculations

This course is intended for graduate students and professionals who already have a basic
understanding of Monte Carlo methods. It focuses on advanced topics that may be needed for
thesis research, for developing new state-of-the-art methods, or for working with modern
production Monte Carlo codes.
Thorough knowledge of some programming language is required (e.g., C++, C, Fortran-2003, perl,
python, Matlab). A previous course in transport theory is recommended. Students are assumed to
be familiar with the material in UNM NE-462 / NE-562 (see F. Brown, "Monte Carlo Techniques for
Nuclear Systems", LA-UR-16-29043, in the Reference Collection at the mcnp.lanl.gov website).
Meet 3 hours/week.

Lecture Topics:
Transport Theory & Physics

AMC-10 Linear Boltzmann Transport Equation & Integral Form
AMC-11 Adjoints & Green's Functions
AMC-12 Fission Matrix Method for MC Criticality Problems
AMC-13 Continuously Varying Materials & Tallies

Random Numbers & Sampling
AMC-20 Random Number Generators & RNG Testing
AMC-21 Random Sampling – Beyond the Basics
AMC-22 Optimal Random Sampling from Piecewise-Linear PDFs
AMC-23 Permutations, Sets of N-from-M, & Counting-sorts

Code Development
AMC-30 Monte Carlo Codes – Basic Algorithm & Structure
AMC-31 Code Development – How to Time & Test
AMC-32 Vector & Parallel Monte Carlo
AMC-33 Optimizing Monte Carlo Calculations

NE-515-006 Course Information AMC-02 - 3

NE-515-006 Information

• Focus – advanced Monte Carlo methods
– Transport theory
– Random sampling
– Coding issues
Target audience is (1) graduate students who may need to write their own MC codes as part of their research &
(2) professionals who need to know the underlying theory & sampling methods that arise in mature,
production-level MC codes.
This is not a beginning course in MC methods. Students are assumed to be familiar with the basics of MC
methods, as in UNM NE-462 / NE-562 (see F. Brown, "Monte Carlo Techniques for Nuclear Systems", LA-UR-16-
29043, in the Reference Collection at the mcnp.lanl.gov website)
Production MC codes such as MCNP are not used or required. There is no discussion of using MCNP or
preparing MCNP input for application problems.
Some computer programming is required. Any language is OK (Preferred: C++, C, Fortran-2003, python, perl;
Acceptable: Matlab)

• Office hours, discussion, help
– Wednesdays – about 1 hour before/after classes
– Email – anytime, 7:00-4:00 - fbrown@lanl.gov, other times – fbrown@q.com
– Other office hours by request

• Grading
– There are a few homework assignments. These will be discussed in class & not graded
– Attendence at most classes is expected
– A project is required & graded. One of the following:

• A MC code or calculations that directly support your research. Send a 1-paragraph description.
• Write a 3D, multigroup, mesh-based MC code. Specific features & tests will be discussed.

NE-515-006 Course Information AMC-02 - 4

UNM NE-515-006, Spring 2018

• Schedule
– Lecture topics will vary among transport, sampling, & codes. Depending on class interests,

additional topics are possible.
– Rough schedule is:

1/17 AMC-10 Linear Boltzmann Transport Equation & Integral Form
1/24 AMC-30 Monte Carlo Codes – Basic Algorithm & Structure

AMC-31 Code Development – How to Time & Test
1/31 AMC-20 Random Number Generators & RNG Testing
2/7 AMC-21 Random Sampling – Beyond the Basics
2/14 AMC-22 Optimal Random Sampling from Piecewise-Linear PDFs
2/21 AMC-23 Permutations, Sets of N-from-M, & Counting-sorts
2/28 AMC-11 Adjoints & Green's Functions
3/7 AMC-12 Fission Matrix Method for MC Criticality Problems
3/14 break
3/21 AMC-33 Optimizing Monte Carlo Calculations
3/28 AMC-32 Vector & Parallel Monte Carlo
4/4 AMC-13 Continuously Varying Materials & Tallies
4/11 Project presentations &/or discussion
4/18 Project presentations &/or discussion
4/25 Project presentations &/or discussion
5/2 Project presentations &/or discussion

The Linear Boltzmann Transport Equation AMC-10 - 1LA-UR-18-20247

Forrest B. Brown

National Laboratory Professor, UNM-NE
Senior R&D Scientist, Monte Carlo, LANL

The Linear Boltzmann
Transport Equation

Advanced
Computational

Methods for
Monte Carlo
Calculations

The Linear Boltzmann Transport Equation AMC-10 - 2LA-UR-18-20247

Outline

• Introduction

• Assumptions

• Linear Boltzmann Transport Equation

• Integral Form & Basis for Monte Carlo Simulation

• Monte Carlo Eigenvalue Problems

The Linear Boltzmann Transport Equation AMC-10 - 3LA-UR-18-20247

Introduction

The Linear Boltzmann Transport Equation AMC-10 - 4LA-UR-18-20247

Introduction

• Monte Carlo methods (MC) can be used to simulate the transport
of radiation through matter
– These lectures will focus on neutral particles (e.g., neutrons & photons)
– It will also be assumed that we are solving linear problems, where the

material properties and geometry are fixed during the MC simulation

• The fundamental equation being solved is the linear Boltzmann
transport equation (LBTE)
– We will focus on interpreting & using the LBTE, not deriving it

• Reading
1. Bell & Glasstone, Nuclear Reactor Theory, pp 1-20, 21-27, 35-37
2. Ganapol, Analytical Benchmarks for Nuclear Engineering

Applications, pp 1-14
3. Cacuci, Handbook of Nuclear Engineering, Chapter 5 (Prinja &

Larsen), pp 430-464

The Linear Boltzmann Transport Equation AMC-10 - 5LA-UR-18-20247

Introduction

• The LBTE provides a continuum description of the behavior of
radiation particles in matter
– For a given radiation source, the solution of the LBTE gives the angular

flux, 𝜓(r,E,𝛺,t), a continuous function (or field)
– 𝜓(r,E,𝛺,t) represents the average behavior of a very, very large number

of particles (in nature, typically 104 – 1018 particles/cm3)
– Physical results are obtained by integrating 𝜓(r,E,𝛺,t) with some

response function:

fission rate = ⨌ dr dE d𝛺 dt 𝚺F(r,E) ∙ 𝜓(r,E,𝛺,t)
V,E,𝛺,t

• LBTE describes continuum, but MC simulates discrete particles

• MC simulates the behavior of individual particles
– To obtain a solution to the LBTE, must simulate very many particles
– Average behavior of the particles gives 𝜓(r,E,𝛺,t) (with uncertainty)
– In the limit of many particles, MC average results approach 𝜓(r,E,𝛺,t)

The Linear Boltzmann Transport Equation AMC-10 - 6LA-UR-18-20247

Introduction

• The LBTE is an integro-differential equation

• MC methods compute integrals (or averages)

• General approach in what follows:

– Examine the LBTE, including what every term represents

– Convert the LBTE integro-differential equation into an integral form

– Examine the integral LBTE to see the fundamental basis for the MC
solution

– Consider time-independent steady state cases – k-eigenvalue &
𝛂-eigenvalue forms of the LBTE

– In some later lectures...
• Start over, defining & using a Green's function approach
• Introduce the adjoint transport equation

The Linear Boltzmann Transport Equation AMC-10 - 7LA-UR-18-20247

Monte Carlo
Simulation

&
Assumptions

The Linear Boltzmann Transport Equation AMC-10 - 8LA-UR-18-20247

Monte Carlo Simulation of Radiation Transport

• Goal: Simulate nature,
particles moving through physical objects

Flight

Random sampling using
ΣT & exponential PDF:
• Free-flight distance

to next collision, s

Ray-tracing in 3D
computational geometry

Collision

Simulate absorption:
• absorb, or
• reduce weight

Random sampling
using nuclear data:
• Collision isotope
• Reaction type
• Exit E' & Ω'
• Secondary particles

During analysis of both flights & collisions,
tally information about distances, collisions, etc.
to use later in statistical analysis for results

The Linear Boltzmann Transport Equation AMC-10 - 9LA-UR-18-20247

Assumptions for LBTE & MC Simulation
Assume:

– Neutrons & photons are particles, not waves
– Particles move in a straight line between collisions (neutrons, photons)
– Collisions occur instantaneously, at a point in space
– Ignore neutron-neutron collisions

– Particle speeds are small enough to neglect relativistic effects
– Particle speeds are high enough to neglect quantum effects

– Particle collisions do not change the properties of a material
(ie, no feedback, no material heating, no depletion)

– Material properties are fixed for the duration of the simulation
(geometry, densities, temperatures, material compositions, …..)

Why?
– Want to solve the linear Boltzmann transport equation
– Want to apply the superposition principle
– Want the Central Limit Theorem to apply for computing statistics

• Statisticians love the term “IID” - Independent, Identically Distributed

(Any or all of the above assumptions can be relaxed, with careful analysis & extra computing cost.)

The Linear Boltzmann Transport Equation AMC-10 - 10LA-UR-18-20247

Linear Boltzmann
Transport Equation

The Linear Boltzmann Transport Equation AMC-10 - 11LA-UR-18-20247

Linear Boltzmann Transport Equation

• Time-dependent linear Boltzmann transport equation for neutrons, with
prompt fission source & external source

• This equation can be solved directly by Monte Carlo, assuming:
– Each neutron history is an IID trial (independent, identically distributed)
– All neutrons must see same probability densities in all of phase space
– Usual method: geometry & materials fixed over solution interval Δt

1
v
∂ψ(

r,E,

Ω,t)

∂t
= Q(

r,E,

Ω,t) + ψ(

r, ′E , ′

Ω ,t)ΣS(

r, ′E →E,

Ω⋅

′Ω)∫∫ d

′Ω d ′E

+ χ(

r,E)
4π

νΣF(

r, ′E)ψ(∫∫

r, ′E , ′

Ω ,t)d

′Ω d ′E

−

Ω⋅∇ + ΣT(

r,E)⎡⎣ ⎤⎦ ⋅ ψ(

r,E,

Ω,t)

1
v
∂ψ(

r,E,

Ω,t)

∂t
= Q + [S +M] ⋅ ψ − [L + T] ⋅ ψ

External source Scattering

Multiplication

Leakage Collisions

Gains Losses

The Linear Boltzmann Transport Equation AMC-10 - 12LA-UR-18-20247

The LBTE is a Balance Equation

• Contributions to the Total Neutron Balance during Δt

Number in ΔrΔΩΔE at t + Δt = Number in ΔrΔΩΔE at t

+ Number gained during Δt

- Number lost during Δt

Note: for this discussion, we will assume all neutrons are prompt

0E
EΔ

0

ΔΩ

Δr

sin

d d d

d d
θ θ φ
µ φ

=
= −

Ω

r φ

θ

()cosµ θ≡

Ω

The Linear Boltzmann Transport Equation AMC-10 - 13LA-UR-18-20247

1
v ⋅ ∂ ∂ tψ(

!
r,E,
!
Ω,t) = Q + [S+M] ⋅ψ − [L + T] ⋅ψ

Number in ΔrΔΩΔE at t+Δt

ΔΩΔΕ d r

V
∫ n r,Ω, E,t()

ΔΩΔΕ d r

V
∫ n r,Ω, E,t + Δt()

Number in ΔrΔΩΔE at t

=

=

ψ (
!
r ,E , Ω̂, t) =v n (

!
r ,E , Ω̂, t)

n (
!
r ,E , Ω̂, t) = 1

v
ψ (
!
r ,E , Ω̂, t)

∂n (
!
r ,E , Ω̂, t)
∂t

= 1
v
∂ψ (
!
r ,E , Ω̂, t)
∂t

The Linear Boltzmann Transport Equation AMC-10 - 14LA-UR-18-20247

• Source term, Q

– Accounts for particles added from some external source,
not from scatter or fission within system

– May be an internal source – point, line, volume source
• Particles added to ΔrΔΩΔE during Δt

ΔΩΔEΔt ∫dr Q(r, Ω, E, t)

– May be an incoming boundary source
• Particles added to ΔrΔΩΔE on boundary during Δt

ΔΩΔEΔt ∫dr Q(r, Ω, E, t) δ(r-rS)

1
v ⋅ ∂ ∂ tψ(

!
r,E,
!
Ω,t) = Q + [S+M] ⋅ψ − [L + T] ⋅ψ

The Linear Boltzmann Transport Equation AMC-10 - 15LA-UR-18-20247

1
v ⋅ ∂ ∂ tψ(

!
r,E,
!
Ω,t) = Q + [S+M] ⋅ψ − [L + T] ⋅ψ

= ΔΩΔEΔt d r

V
∫ d ′E

0

∞

∫ d ′Ω
4π
∫ fs ′Ω •Ω, ′E → E()Σs r, ′E()ψ r, ′Ω , ′E ,t()

Number gained in ΔrΔΩΔE
from scattering during Δt

Probability of scatter from Ω',E' to Ω,E

• Joint pdf for E,𝛀 exiting collision

• For some types of scatter, may be
factored as f𝝁(𝝁) fE(E|𝝁)

• Angular dependence of scattering
from E',𝛀' to E,𝛀 depends on
the cosine of the scattering angle
𝛀'⋅𝛀, not the individual directions

number scattering
at Ω',E'

The Linear Boltzmann Transport Equation AMC-10 - 16LA-UR-18-20247

1
v ⋅ ∂ ∂ tψ(

!
r,E,
!
Ω,t) = Q + [S+M] ⋅ψ − [L + T] ⋅ψ

= ΔΩΔEΔt d r

V
∫

χ E()
4π

d ′E
0

∞

∫ d ′Ω ν ′E()
4π
∫ Σ f r, ′E()ψ r, ′Ω , ′E ,t()

Number gained in
ΔrΔΩΔE from
fission during Δt

average number of
neutrons per fission

Probability of neutrons being
produced in ΔΩΔE during Δt

𝟀 = pdf for energy E of fission
neutrons produced

1/4𝜋 = isotropic emission in Ω

fissions due to
neutrons at E',Ω'

The Linear Boltzmann Transport Equation AMC-10 - 17LA-UR-18-20247

1
v ⋅ ∂ ∂ tψ(

!
r,E,
!
Ω,t) = Q + [S+M] ⋅ψ − [L + T] ⋅ψ

sr
ˆsn

Ω

dA
V

(){ }ˆ , , ,E t E t dA⎡ ⎤= Δ Δ Δ •⎣ ⎦Ω Ωsn J r

= ΔΩΔEΔt dA
A
∫ n̂s • J rs ,Ω, E,t() = ΔΩΔEΔt d r

V
∫ ∇ • J r,Ω, E,t()

= ΔΩΔEΔt d r
V
∫ Ω•∇ψ r,Ω, E,t()

Number lost through entire
surface of ΔrΔΩΔE during Δt

note: Application of divergence theorem

Number lost through
surface dA of V

J(r,𝛀,E,t) = 𝛀 𝜓(r,𝛀,E,t)

The Linear Boltzmann Transport Equation AMC-10 - 18LA-UR-18-20247

1
v ⋅ ∂ ∂ tψ(

!
r,E,
!
Ω,t) = Q + [S+M] ⋅ψ − [L + T] ⋅ψ

= d r fs ′Ω •Ω, E → ′E()d ′E d ′Ω

4π
∫

0

∞

∫
⎡

⎣
⎢

⎤

⎦
⎥

V
∫ Σs r,E()ψ r,Ω, E,t()ΔΩΔEΔt

= ΔΩΔEΔt d r
V
∫ Σ A r,E() + Σs r,E()⎡⎣ ⎤⎦ψ r,Ω, E,t()

= ΔΩΔEΔt d r
V
∫ ΣT r,E()ψ r,Ω, E,t()

Number scattering out of ΔΩΔE during Δt

= ΔΩΔEΔt d r

V
∫ Σa r,E()ψ r,Ω, E,t()Number lost through absorption

in ΔrΔΩΔE during Δt

1

Number in ΔrΔΩΔE lost to absorption & scatter-out during Δt

The Linear Boltzmann Transport Equation AMC-10 - 19LA-UR-18-20247

1
v ⋅ ∂ ∂ tψ(

!
r,E,
!
Ω,t) = Q + [S+M] ⋅ψ − [L + T] ⋅ψ

d r
V
∫

1
v
∂
∂t

+Ω •∇ + Σ r, E()⎡

⎣
⎢

⎤

⎦
⎥ψ r,Ω, E,t()−Q r,Ω, E,t()

− d ′E
0

∞

∫ d ′Ω
4π
∫ Σs r, ′Ω •Ω, ′E → E()ψ r, ′Ω , ′E ,t()−

−
χ E()
4π

d ′E
0

∞

∫ d ′Ω ν ′E()
4π
∫ Σ f r, ′E()ψ r, ′Ω , ′E ,t()

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎫

⎬

⎪
⎪
⎪

⎭

⎪
⎪
⎪

= 0

Neutron balance equation in V: 0
0
0

t

E

Δ →
ΔΩ→
Δ →

The Linear Boltzmann Transport Equation AMC-10 - 20LA-UR-18-20247

1
v ⋅ ∂ ∂ tψ(

!
r,E,
!
Ω,t) = Q + [S+M] ⋅ψ − [L + T] ⋅ψ

Implies the Time Dependent Neutron Transport Equation:

1
v
∂
∂t

+Ω •∇ + Σ r, E()⎡

⎣
⎢

⎤

⎦
⎥ψ r,Ω, E,t() =

= d ′E
0

∞

∫ d ′Ω
4π
∫ Σs r, ′Ω •Ω, ′E → E()ψ r, ′Ω , ′E ,t() +

+
χ E()
4π

d ′E
0

∞

∫ d ′Ω ν ′E()
4π
∫ Σ f r, ′E()ψ r, ′Ω , ′E ,t() +Q r,Ω, E,t()

The Linear Boltzmann Transport Equation AMC-10 - 21LA-UR-18-20247

Linear Boltzmann Transport Equation

• Time-dependent linear Boltzmann transport equation for neutrons,
with prompt fission source & external source

• This equation can be solved directly by Monte Carlo, assuming:
– Each neutron history is an IID trial (independent, identically

distributed)
– All neutrons must see same probability densities in all of phase space
– Usual method: geometry & materials fixed over solution interval Δt

1
v
∂ψ(

r,E,

Ω,t)

∂t
= Q(

r,E,

Ω,t) + ψ(

r, ′E , ′

Ω ,t)ΣS(

r, ′E →E,

Ω⋅

′Ω)∫∫ d

′Ω d ′E

+ χ(

r,E)
4π

νΣF(

r, ′E)ψ(∫∫

r, ′E , ′

Ω ,t)d

′Ω d ′E

−

Ω⋅∇ + ΣT(

r,E)⎡⎣ ⎤⎦ ⋅ ψ(

r,E,

Ω,t)

1
v
∂ψ(

r,E,

Ω,t)

∂t
= Q + [S +M] ⋅ ψ − [L + T] ⋅ ψ

External source Scattering

Multiplication

Leakage Collisions

Gains Losses

The Linear Boltzmann Transport Equation AMC-10 - 22LA-UR-18-20247

Integral Transport Equation
&

Basis for MC Simulation

The Linear Boltzmann Transport Equation AMC-10 - 23LA-UR-18-20247

Monte Carlo & Transport Equation

• Derive integral equation, in kernel form
– Start with integro-differential equation
– Use integrating factor

– Define

Collision density:

Transport kernel:

Collision kernel:

– Then

exp − ΣT (

!
r − RΩ̂,E)d ′R

0

R

∫
⎡

⎣
⎢

⎤

⎦
⎥ , where RΩ̂ =

!
r −
!
′r

T(′
!
r →

!
r,
!
E) = ΣT(

!
r,E) ⋅ exp − ΣT(

!
′r + sΩ̂,E)ds

0

!
r−
!
′r

∫
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
⋅
δ Ω̂i

!r−! ′r!r−! ′r −1()
!
r−
!
′r 2

!
E = E ⋅ Ω̂

 Ψ(
!
r,
!
E) = ΣT(

!
r,E) ⋅ ψ(

!
r,
!
E)

C(
!
′E →
!
E,
!
r) = ΣS(

!
r,
!
′E →
!
E)

ΣT(
!
r, ′E)

+ χ(
!
r,E)νΣF(

!
r, ′E)

4π ⋅ ΣT(
!
r, ′E)

Ψ(
!
r,
!
E) = Ψ(

!
′r ,
!
′E) ⋅C(

!
′E →
!
E,
!
′r)d
!
′E + Q(′

!
r ,
!
′E)∫⎡⎣ ⎤
⎦∫ ⋅T(

!
′r →
!
r,
!
E)d
!
′r

Reference: D.C. Irving, "The Adjoint Boltzmann Equation and Its Simulation by Monte Carlo"
Nuclear Engineering & Design 15, 273-292 (1971)

The Linear Boltzmann Transport Equation AMC-10 - 24LA-UR-18-20247

Monte Carlo & Transport Equation

Basis for the Monte Carlo Solution Method

Let p = (
!
r,
!
E) and R(′p → p) = C(

!
′E →
!
E,
!
′r) ⋅T(

!
′r →
!
r,
!
E)

Expand Ψ into components, k, having 0,1,2,... collisions

Ψ(p) = Ψk (p)
k=0

∞

∑ , with Ψ0(p) = Q(
!
′r ,
!
E) ⋅T(

!
′r →
!
r,
!
E)d
!
′r∫

By definition,

Ψk (p) = Ψk−1(′p)∫ ⋅R(′p → p)d ′p

Markovian: collision k depends only on the results of collision k-1,
 and not on any prior collisions k-2, k-3, ...

Ψ(
!
r,
!
E) = Ψ(

!
′r ,
!
′E) ⋅C(

!
′E →
!
E,
!
′r)d
!
′E + Q(′

!
r ,
!
′E)∫⎡⎣ ⎤
⎦∫ ⋅T(

!
′r →
!
r,
!
E)d
!
′r

The Linear Boltzmann Transport Equation AMC-10 - 25LA-UR-18-20247

Monte Carlo & Transport Equation

Histories
• After repeated substitution for Ψk

• A "history" is a sequence of states (p0, p1, p2, p3, …..)

• For estimates in a given region, tally the occurrences for
each collision of each "history" within a region

Ψk (p) = Ψk−1(′p)∫ ⋅R(′p → p)d ′p

= ... Ψ0(p0)∫ ⋅R(p0 → p1)∫ ⋅R(p1 → p2)...R(pk−1 → p)dp0...dpk−1

p0

p1

p2
p3

p4p1

p0

p2p3

History 1
History 2

The Linear Boltzmann Transport Equation AMC-10 - 26LA-UR-18-20247

Monte Carlo & Transport Equation

Monte Carlo approach:

• For 1 trial, generate a sequence of states (p0, p1, p2, p3, …) by:

– Randomly sample from PDF for source: Ψ0(p0)
– Randomly sample from PDF for kth transition: R(pk-1 → pk)
– Repeat sampling transitions until termination

• Repeat for M trials (histories)

• Generate estimates of results by averaging over states for M
histories:

Ψk (p) = ... Ψ0(p0)∫ ⋅R(p0 → p1)∫ ⋅R(p1 → p2)...R(pk−1 → p)dp0...dpk−1

A = A(p) ⋅ Ψ(p)dp∫ ≈ 1
M

⋅ A(pk,m)
k=1

∞

∑⎛⎝⎜
⎞
⎠⎟m=1

M

∑
Events

In history
Histories

In problem

sample
p0

sample
p1

sample
p2

sample
p

The Linear Boltzmann Transport Equation AMC-10 - 27LA-UR-18-20247

Fixed-source Monte Carlo Calculation

Source
- select r,E, Ω

Random
Walk Random

Walk

Random
WalkRandom

Walk
Random

Walk

Random
Walk

Source
- select r,E, Ω

Random
Walk Random

Walk

Random
Walk

Random
Walk

Random
Walk

Source
- select r,E, Ω

Random
Walk Random

Walk

Random
Walk

Random
Walk

Random
Walk

Random
Walk

History 1

History 2

History 3

Random Walk for a particle

Particle Histories

Track through geometry,
- select collision site randomly
- tallies

Collision physics analysis,
- Select new E,Ω randomly
- tallies

Secondary
Particles

The Linear Boltzmann Transport Equation AMC-10 - 28LA-UR-18-20247

Monte Carlo
Eigenvalue Problems

The Linear Boltzmann Transport Equation AMC-10 - 29LA-UR-18-20247

Time-dependent Transport

• Monte Carlo solution (over Δt, with fixed geometry & materials)
– Simulate time-dependent transport for a neutron history
– If fission occurs, bank any secondary neutrons.
– When original particle is finished, simulate secondaries till done.
– Tallies for time bins, energy bins, cells, …

• At time t, the overall neutron level is

• Alpha & T (reactor period, T = 1/α) can be defined by:

This is the "dynamic alpha", NOT an eigenvalue !

1
v
∂ψ(
!
r,E,
!
Ω, t)

∂t
= Q + [S +M] ⋅ ψ − [L + T] ⋅ ψ

N(t) = N0 e
α t

α = d ln N(t)
dt

≈ ln N(t) − ln N0

t − t0

N(t) = ψ(

!
r,E,Ω̂, t)
v!

r ,E,Ω̂
∫∫∫ d

!
rdEdΩ̂

The Linear Boltzmann Transport Equation AMC-10 - 30LA-UR-18-20247

Alpha Eigenvalue Equations

• For problems which are separable in space & time, it may be
advantageous to solve a static eigenvalue problem, rather than a fully
time-dependent problem

• Assume:
1. Fixed geometry & materials
2. No external source: Q(r,E,Ω,t) = 0
3. Separability: 𝚿(r,E,Ω,t) = 𝚿α(r,E,Ω) eαt,

• Substituting 𝚿 into the time-dependent transport equation yields

– This is a static equation, an eigenvalue problem for α and 𝚿α
without time-dependence

– α is often called the time-eigenvalue or time-absorption
– α -eigenvalue problems can be solved by Monte Carlo methods

L + T + α

v
⎡
⎣⎢

⎤
⎦⎥
Ψα (
!
r,E,
!
Ω) = S +M[]Ψα

The Linear Boltzmann Transport Equation AMC-10 - 31LA-UR-18-20247

Keff Eigenvalue Equation

• For problems with fission multiplication, another approach is to create a
static eigenvalue problem from the time-dependent transport equation
(the asymptotic or steady-state solution)

• Introduce Keff, a scaling factor on the multiplication (𝛎)

• Assume:
1. Fixed geometry & materials
2. No external source: Q(r,E,Ω,t) = 0
3. ∂𝜓/∂t = 0: 𝛎 ⇒ 𝛎 / keff

• Setting ∂𝜓/∂t = 0 and introducing the Keff eigenvalue gives

– Steady-state equation, a static eigenvalue problem for Keff and 𝜓k
– Keff = effective multiplication factor
– Critical: K=1, subcritical: k<1, supercritical: k >1
– Keff & 𝜓k should never be used to model time-dependent problems.

L + T[]Ψk (

!
r,E,
!
Ω) = S + 1

Keff

M⎡

⎣
⎢

⎤

⎦
⎥Ψk

The Linear Boltzmann Transport Equation AMC-10 - 32LA-UR-18-20247

Comments on Keff and α Equations

• Criticality
Supercritical: α > 0 or Keff > 1
Critical: α = 0 or Keff = 1
Subcritical: α < 0 or Keff < 1

• Keff vs. α eigenvalue equations
– 𝚿k(r,E,Ω) ≠ 𝚿α(r,E,Ω), except for a critical system

– α eigenvalue & 𝚿α eigenfunction used for time-dependent problems
– Keff eigenvalue & 𝚿k eigenfunction used for reactor design & analysis

– Although α = (Keff - 1) / λ, where λ = lifetime,
there is no direct relationship between 𝚿k(r,E,Ω) and 𝚿α(r,E,Ω)

• Keff eigenvalue problems can be solved directly using Monte Carlo

• α eigenvalue problems are solved by Monte Carlo indirectly
using a series of Keff calculations

The Linear Boltzmann Transport Equation AMC-10 - 33LA-UR-18-20247

Comments on Keff and α Equations

K equation [L + T] 𝚿k = [S + 1/k M] 𝚿k

α equation [L + T + α/v] 𝚿α = [S + M] 𝚿α

• The factor 1/k changes the relative level of the fission source

• The factor α/v changes the absorption & neutron spectrum
– For α > 0, more absorption at low E ➜ harder spectrum
– Double-density Godiva, average neutron energy causing fission:

k calculation: 1.30 MeV
α calculation: 1.68 MeV

• For separable problems, 𝚿(r,E,Ω,t) = 𝚿α (r,E,Ω) eαt

• No similar equation for k, since not used for time-dependence

The Linear Boltzmann Transport Equation AMC-10 - 34LA-UR-18-20247

K-eigenvalue equation

where
L = leakage operator S = scatter-in operator
T = collision operator M = fission multiplication

operator
• Rearrange

➜ This eigenvalue equation will be solved by power iteration

(L + T)Ψ = SΨ + 1
Keff MΨ

(L + T − S)Ψ = 1
Keff MΨ

Ψ = 1
Keff ⋅ (L + T − S)−1MΨ

Ψ = 1
Keff ⋅FΨ

Ψ (n+1) = 1
Keff
(n) ⋅FΨ (n), n = 0,1,2,... iteration

The Linear Boltzmann Transport Equation AMC-10 - 35LA-UR-18-20247

Power Iteration

Diffusion Theory or
Discrete-ordinates Transport

Initial guess for Keff and 𝚿
Keff

(0), 𝚿(0)

Outer iteration –
Repeat until Keff

(n+1) & 𝚿 (n+1) converge

Solve for 𝚿(n+1)

Inner iterations - sweep over space
or space/angle to solve for 𝚿(n+1)

Update Keff
(n+1)

Done. Print results

Monte Carlo

Initial guess for Keff and 𝚿
Keff

(0), 𝚿(0)

Outer iteration –
Repeat until Keff

(n+1) & 𝚿 (n+1) converge

Solve for 𝚿(n+1)

Follow particle histories to solve for 𝚿 (n+1)

During histories, save fission sites to use
for source in next iteration

During histories, make tallies for Keff
(n+1)

Done, clear tallies.
Continue iterating, accumulate tallies

(L + T − S)Ψ (n+1) = 1
Keff
(n) MΨ (n)

Keff
(n+1) = Keff

(n) ⋅ 1iMΨ (n+1)

1iMΨ (n)

(L + T − S)Ψ (n+1) = 1
Keff
(n) MΨ (n)

The Linear Boltzmann Transport Equation AMC-10 - 36LA-UR-18-20247

Monte Carlo Eigenvalue calculation
Initial
Guess

Cycle 1
Keff

(1)
Cycle 2

Keff
(2)

Cycle 3
Keff

(3)
Cycle 4

Keff
(4)

Cycle 1
Source

Cycle 3
Source

Cycle 4
Source

Cycle 5
Source

Cycle 2
Source

Source
- select r,E, Ω

Random
Walk Random

Walk

Random
WalkRandom

Walk

Random
Walk

Random
Walk

Source
- select r,E, Ω

Random
Walk Random

Walk

Random
Walk

Random
Walk

Random
Walk

Source
- select r,E, Ω

Random
Walk Random

Walk

Random
Walk

Random
Walk

Random
Walk

Random
Walk

Iterate (cycle) until converged, then more to accumulate tallies

The Linear Boltzmann Transport Equation AMC-10 - 37LA-UR-18-20247

α-Eigenvalue Calculations (Alpha search)

• Eigenvalue equation with both Keff & α
– α is a fixed number, not a variable or eigenvalue

– Find the k-eigenvalue as function of α, K(α)

• Note: If α < 0
– Real absorption plus time absorption could be negative
– Move α/v to right side to prevent negative absorption,
– -α/v term on right side is treated as a delta-function scatter

– Select a fixed value for α
– Solve the K-eigenvalue equations, with fixed time-absorption α/v
– Select a different α and solve for a new Keff
– Repeat, searching for value of α which results in Keff = 1

L + T + α

v
⎡
⎣⎢

⎤
⎦⎥
Ψα (
!
r,E,
!
Ω) = S + 1

Keff

M⎡

⎣⎢
⎤

⎦⎥
Ψα

The Linear Boltzmann Transport Equation AMC-10 - 38LA-UR-18-20247

K- and α-Eigenvalue Calculations

• K-eigenvalue solution

Loop for Power Iteration for K
• Loop over neutrons in cycle
• • neutron history
• • • •
• • •

• α-eigenvalue solution

Loop for α search iterations
• Loop for Power Iteration for K
• • Loop over neutrons in cycle
• • • neutron history
• • • • •
• • • •
• • •

➜ Find K(α), then search for α that gives K(α)=1

Monte Carlo

Monte Carlo

The Linear Boltzmann Transport Equation AMC-10 - 39LA-UR-18-20247

Questions ?

The Linear Boltzmann Transport Equation AMC-10 - 40LA-UR-18-20247

Adjoints & Green's Functions AMC-11 - 1LA-UR-18-20247

Forrest B. Brown

National Laboratory Professor, UNM-NE
Senior R&D Scientist, Monte Carlo, LANL

Adjoints
&
Green's Functions

Advanced
Computational

Methods for
Monte Carlo
Calculations

Adjoints & Green's Functions AMC-11 - 2LA-UR-18-20247

Outline

• Introduction
– Forward & Adjoint Transport Equations
– Superposition Principle
– Green's functions & transport

• Forward & Adjoint LBTE
– Integral equation for the neutron source
– Integral equation for the adjoint source
– Comments on forward vs adjoint
– Relationship between forward & adjoint

• Green's Function Approach
– Forward & adjoint Green's functions
– K-eigenvalue form
– Reciprocity
– Discussion

Adjoints & Green's Functions AMC-11 - 3LA-UR-18-20247

Introduction

Adjoints & Green's Functions AMC-11 - 4LA-UR-18-20247

Introduction – Forward & Adjoint Transport

• Given a source, the forward LBTE gives the response at all points
in the problem phase space
– Forward LBTE describes where the particles will go

• Given a response, the adjoint LBTE gives the source at all points
in the problem phase space that would produce the response
– Adjoint LBTE describes where the particles came from

– The adjoint LBTE essentially follows particles backwards (in Ω,E,t) from
the response to the source

– For fixed-source problems, the response is a particular tally
– For eigenvalue problems, the response is the forward fundamental

mode solution (ie, the fission neutron distribution)
– The adjoint solution is often called the importance

Adjoints & Green's Functions AMC-11 - 5LA-UR-18-20247

Introduction – Superposition Principle

• Consider 2 sources, A & B, and one detector
point C

– Denote the flux response at point C by 𝟇C

– If source A is on & source B is off,
• Solve the LBTE to get the flux response at point C

due to the source at point A, 𝟇AàC
• 𝟇C = 𝟇AàC

– If source A is off & source B is on,
• Solve the LBTE to get the flux response at point C

due to the source at point A, 𝟇BàC
• 𝟇C = 𝟇BàC

– If source A is on & source B is on,
• 𝟇C = 𝟇AàC + 𝟇BàC

• Linearity of LBTE permits adding the response
from different sources to get the total source

A B

C

Adjoints & Green's Functions AMC-11 - 6LA-UR-18-20247

• G(A à B)
– Green's function, "here-to-there" function
– Probability that source at point A produces source at point B

• Transport theory - Peierl's equation for multiplying system

– G(r' à r) gives the fission source at r (in a single generation)
due to a fission neutron born at r'

– This use of a Green's function is considered "obvious",
but it is based on rigorous math (ie, integral operator theory)

B

A

Introduction - Green's Functions & Transport Theory

S(!r) = 1

keff

 ⋅ d!′r ⋅S(!′r) ⋅G(!′r →
!r)

all !′r
∫

SB = SA · G(A à B)

Adjoints & Green's Functions AMC-11 - 7LA-UR-18-20247

Forward & Adjoint
LBTE

Adjoints & Green's Functions AMC-11 - 8LA-UR-18-20247

Time-independent, Including Fission

• Time-independent forward LBTE • Time-independent adjoint LBTE

Ω̂ ⋅∇Ψ(!r,E,Ω̂)
+ΣT(!r,E)Ψ(!r,E,Ω̂)

− d ′E d ˆ ′Ω ΣS(!r, ′E →E, Ω̂• ′Ω̂∫∫) Ψ(!r, ′E , ˆ ′Ω)

= S(!r,E,Ω̂)

Short form: LΨ(!r,E,Ω̂) = S(!r,E,Ω̂)

For fixed-source problem,
 S is an internal or volume source
For eigenvalue problem,

 S(
!
r,E,Ω̂) = 1

K ⋅
χ(E)

4π
d ′E d ˆ ′Ω νΣF (

!
r, ′E) Ψ(

!
r, ′E , ˆ ′Ω)∫∫

−Ω̂ ⋅∇Ψ†(!r,E,Ω̂)
+ΣT(!r,E)Ψ†(!r,E,Ω̂)

− d ′E d ˆ ′Ω ΣS(!r,E→ ′E , − Ω̂• ′Ω̂∫∫) Ψ†(!r, ′E , ˆ ′Ω)

= S†(!r,E,Ω̂)

Short form: L†Ψ†(!r,E,Ω̂) = S†(!r,E,Ω̂)

For fixed-source problem,
 S† is an specific tally response
For eigenvalue problem,

 S†(
!
r,E,Ω̂) = 1

K ⋅ νΣF (
!
r ,E) d ′E d ˆ ′Ω ⋅

χ(′E)

4π
⋅ Ψ† (

!
r, ′E , ˆ ′Ω)∫∫

Reverse Ω̂ to -Ω̂
Interchange E' and E
Interchange νΣF and χ/4π

Adjoints & Green's Functions AMC-11 - 9LA-UR-18-20247

Adjoint = Importance

• Why are adjoint solutions needed?

– In quantum theory, operators that produce measurable results are Hermitian (or
self-adjoint). Complete sets of orthogonal eigenfunctions exist.

– In 1-speed transport theory or 1-group diffusion theory
• The operators are self-adjoint (kernels are symmetric)
• The LBTE has a complete set of orthogonal eigenfunctions
• Forward & adjoint eigenfunctions are the same

– For energy-dependent transport & multigroup diffusion
• The operators are not self-adjoint (kernels are not symmetric)
• Eigenfunctions for the forward LBTE are not orthogonal & are different from the

adjoint eigenfunctions
• However, the forward & adjoint eigenfunctions are biorthogonal,

∫𝜓p
† 𝜓q =0 if p≠q

– First-order perturbation theory: 𝚫𝜌 = < 𝜓† 𝚫x 𝜓 > / < 𝜓† F 𝜓 >
• Change in parameter weighted by importance

– Reactor kinetics: 𝚲eff = < 𝜓† 1/v 𝜓 > / < 𝜓† F 𝜓 >
• Importance weighting 𝛃eff = < 𝜓† B 𝜓 > / < 𝜓† F 𝜓 >

Adjoints & Green's Functions AMC-11 - 10LA-UR-18-20247

MC Simulation

• MC simulation gives the solution to the forward LBTE

• For some special cases, the MC simulation can be run backwards

– 1-speed problems
– Multigroup problems (transpose the scattering matrix)

• For general, energy-dependent problems, the MC simulation
cannot be run backwards to get the adjoint LBTE solution

– Some reactions can't be sampled backwards
• scattering with correlated E',𝛍 exit parameters
• some inelastic scatters
• etc.

Adjoints & Green's Functions AMC-11 - 11LA-UR-18-20247

Green's Functions

Adjoints & Green's Functions AMC-11 - 12LA-UR-18-20247

Forward Equations

• Define the net loss operator in the LBTE as

• The Green’s function is the solution to the LBTE for a point source

– By convention, G(r0,E0,𝛀0àr,E,𝛀) is used, rather than G(r,E,𝛀)

• The LBTE solution for an arbitrary source can then be written as

 L ⋅G(
!
r0,E0,Ω̂0 →

!
r,E,Ω̂) = δ(

!
r −
!
r0) ⋅δ(E−E0) ⋅δ(Ω̂ − Ω̂0),

Ψ(
!
r,E,Ω̂) = d

!
r0 dE0 dΩ̂0∫∫∫ S(

!
r0,E0,Ω̂0) ⋅G(

!
r0,E0,Ω̂0 →

!
r,E,Ω̂)

L ⋅Ψ(
!
r,E,Ω̂) = Ω̂ ⋅∇Ψ(

!
r,E,Ω̂)+ ΣT(

!
r,E)Ψ(

!
r,E,Ω̂)

− d ′E d ˆ ′Ω ΣS(
!
r, ′E →E, ′Ω̂ i Ω̂∫∫) Ψ(

!
r, ′E , ˆ ′Ω)

Adjoints & Green's Functions AMC-11 - 13LA-UR-18-20247

Backward Equations

• Define the net loss operator in the LBTE as

• The Green’s function is the solution to the LBTE for a point source

– By convention, G† (r0,E0,𝛀0àr,E,𝛀) is used, rather than G† (r,E,𝛀)

• The LBTE solution for an arbitrary source can then be written as

L† ⋅Ψ†(
!
r,E,Ω̂) = −Ω̂ ⋅∇Ψ†(

!
r,E,Ω̂)+ ΣT(

!
r,E)Ψ†(

!
r,E,Ω̂)

− d ′E d ˆ ′Ω ΣS(
!
r,E→ ′E ,− ′Ω̂ i Ω̂∫∫) Ψ†(

!
r, ′E , ˆ ′Ω)

 L
† ⋅G†(

!
r0,E0,Ω̂0 →

!
r,E,Ω̂) = δ(

!
r −
!
r0) ⋅δ(E−E0) ⋅δ(Ω̂ − Ω̂0)

Ψ†(
!
r,E,Ω̂) = d

!
r0 dE0 dΩ̂0∫∫∫ S†(

!
r0,E0,Ω̂0) ⋅G

†(
!
r0,E0,Ω̂0 →

!
r,E,Ω̂)

Adjoints & Green's Functions AMC-11 - 14LA-UR-18-20247

k-eigenvalue Equations

• Transport equation, k-eigenvalue form

Solution using Green's function

• Adjoint transport equation, k-eigenvalue form

Solution using Green's function

L ⋅Ψ(

!
r,E,Ω̂) = 1

K ⋅
χ(E)
4π

⋅S(
!
r)

S(
!
r) = d ′E d ˆ ′Ω νΣF(

!
r, ′E) Ψ(

!
r, ′E , ˆ ′Ω)∫∫

Ψ(
!
r,E,Ω̂) = 1

K ⋅ d
!
r0 dE0 dΩ̂0∫∫∫

χ(E0)
4π

⋅S(
!
r0) ⋅G(

!
r0,E0,Ω̂0 →

!
r,E,Ω̂)

 L
† ⋅Ψ†(

!
r,E,Ω̂) = 1

K ⋅ νΣF(
!
r,E) ⋅S†(

!
r)

S†(
!
r) = d ′E d ˆ ′Ω ⋅ χ(′E)

4π
⋅Ψ†(
!
r, ′E , ˆ ′Ω)∫∫

Ψ†(
!
r,E,Ω̂) = 1

K ⋅ d
!
r0 dE0 dΩ̂0∫∫∫ ⋅ νΣF(

!
r0,E0) ⋅S

†(
!
r0) ⋅G

†(
!
r0,E0,Ω̂0 →

!
r,E,Ω̂)

Adjoints & Green's Functions AMC-11 - 15LA-UR-18-20247

Reciprocity

• G and G† are not symmetric, can't reverse r0,E0,𝛀0 and r,E,𝛀

• Reciprocity for direct & adjoint Green’s function

– Because of irreversible energy dependence, neither G nor G† is
symmetric in initial and final arguments.

• Apply reciprocity to the adjoint Green's function solution

• Compare with forward

 G
†(
!
r0,E0,Ω̂0 →

!
r,E,Ω̂) = G(

!
r,E,Ω̂→

!
r0,E0,Ω̂0)

Ψ†(
!
r,E,Ω̂) = 1

K ⋅ d
!
r0 dE0 dΩ̂0∫∫∫ ⋅ νΣF(

!
r0,E0) ⋅S

†(
!
r0) ⋅G(

!
r,E,Ω̂→

!
r0,E0,Ω̂0)

Ψ(
!
r,E,Ω̂) = 1

K ⋅ d
!
r0 dE0 dΩ̂0∫∫∫

χ(E0)
4π

⋅S(
!
r0) ⋅G(

!
r0,E0,Ω̂0 →

!
r,E,Ω̂)

Adjoints & Green's Functions AMC-11 - 16LA-UR-18-20247

Discussion

• Forward & backward solutions

• Why does this matter?

MC simulation computes G(r0,E0,𝛀0àr,E,𝛀) directly

Can pick starting points r0,E0,𝛀0, then
record tallies at r,E,𝛀 with appropriate weighting functions

Ψ(
!
r,E,Ω̂) = 1

K ⋅ d
!
r0 dE0 dΩ̂0∫∫∫

χ(E0)
4π

⋅S(
!
r0) ⋅G(

!
r0,E0,Ω̂0 →

!
r,E,Ω̂)

Ψ†(
!
r,E,Ω̂) = 1

K ⋅ d
!
r0 dE0 dΩ̂0∫∫∫ ⋅ νΣF(

!
r0,E0) ⋅S

†(
!
r0) ⋅G(

!
r,E,Ω̂→

!
r0,E0,Ω̂0)

Adjoints & Green's Functions AMC-11 - 17LA-UR-18-20247

Discussion

• Why does this matter ?

– Green's function approach enables the use of the very rich
mathematical tools from linear operator theory

– Linear operator theory can be used to examine the existence &
completeness of eigenfunction expansions

– Green's function approach enables development of different Monte
Carlo approaches

– Next lecture on the fission matrix method is an example

– Variance reduction methods attempt to influence the endpoints r,E,𝛀

Adjoints & Green's Functions AMC-11 - 18LA-UR-18-20247

Adjoints & Green's Functions AMC-11 - 19LA-UR-18-20247

Adjoints & Green's Functions AMC-11 - 20LA-UR-18-20247

Fission Matrix Method for Monte Carlo Criticality Problems AMC-12 - 1LA-UR-18-20247

Forrest B. Brown

National Laboratory Professor, UNM-NE
Senior R&D Scientist, Monte Carlo, LANL

Fission Matrix Method for
Monte Carlo Criticality
Problems

Advanced
Computational

Methods for
Monte Carlo
Calculations

Fission Matrix Method for Monte Carlo Criticality Problems AMC-12 - 2LA-UR-18-20247

Abstract

Fission Matrix Method for Monte Carlo Criticality Problems
Forrest Brown

The theory underlying the fission matrix method is derived using a rigorous Green’s function
approach. The method is then used to investigate fundamental properties of the transport
equation for a continuous-energy physics treatment. We provide evidence that an infinite set of
discrete real eigenvalues and eigenfunctions exist for the continuous-energy problem, and that
the eigenvalue spectrum converges smoothly as the spatial mesh for the fission matrix is refined.

We also derive equations for the adjoint solution. We show that if the mesh is sufficiently refined
so that both forward and adjoint solutions are valid, then the adjoint fission matrix is identical to
the transpose of the forward matrix. While the energy-dependent transport equation is strictly
biorthogonal, we provide surprising results that the forward modes are very nearly self-adjoint for
a variety of continuous-energy problems.

Fission Matrix Method for Monte Carlo Criticality Problems AMC-12 - 3LA-UR-18-20247

Outline

• Introduction
– Higher eigenmodes
– Green's functions & transport
– Motivation

• Theoretical Basis of the Fission Matrix
– Integral equation for the neutron source
– Integral equation for the adjoint source
– Comments of forward vs adjoint

• Forward & Adjoint Fission Matrix Equations
– Forward fission matrix equations
– Adjoint fission matrix equations
– Relationship between forward & adjoint

• Fission Matrix Eigenmodes & Eigenvalue Spectrum
– Higher mode analysis
– Spectrum convergence with mesh refinement
– Real vs Complex eigenvalues
– Near-orthogonality of eigenfunctions

• Conclusions & Future Work

Fission Matrix Method for Monte Carlo Criticality Problems AMC-12 - 4LA-UR-18-20247

Introduction

Fission Matrix Method for Monte Carlo Criticality Problems AMC-12 - 5LA-UR-18-20247

Higher Eigenmodes

Vibrating strings:
• Higher modes add "tone",

but die away quickly
• Fundamental mode persists
• Feedback, instability, nonlinear

effects, …, may excite higher modes

0

1

2

3

4

5

etc.

Fission Matrix Method for Monte Carlo Criticality Problems AMC-12 - 6LA-UR-18-20247

• F(A à B)
– Green's function, "here-to-there" function
– Probability that source at point A produces source at point B

• Transport theory - Peierl's equation for multiplying system

– Discretize space into blocks, or mesh regions
– Compute F(r′ à r) with Monte Carlo
– Solve matrix eigenvalue problem for sources:

– Can also solve for higher modes

B

A

Introduction - Green's Functions & Transport Theory

S(!r) = 1

keff

 ⋅ d!′r ⋅S(!′r) ⋅F(!′r →
!r)

all !′r
∫

!
S = 1

keff
 ⋅ F ⋅

!
S

SB = SA · F(A à B)

Fission Matrix Method for Monte Carlo Criticality Problems AMC-12 - 7LA-UR-18-20247

Introduction – Who Cares?

• Knowledge of fundamental & all higher modes
– “Crown Jewels” of analysis – explains everything

• Reactor theory & mathematical foundations
– Existence of higher modes
– Eigenvalue spectrum – discrete ? real ?
– Forward & adjoint modes
– Assessment of spatial refinement

• Fundamental reactor physics analysis
– Higher modes for stabiility analysis of Xenon & void oscillations
– Slow-transient analysis
– Startup, probability of initiation

• Source convergence testing & acceleration
– May provide robust, reliable, automated convergence test
– Acceleration of source convergence

Fission Matrix Method for Monte Carlo Criticality Problems AMC-12 - 8LA-UR-18-20247

Theoretical Basis
of the

Fission Matrix

Fission Matrix Method for Monte Carlo Criticality Problems AMC-12 - 9LA-UR-18-20247

Integral Equation for the Neutron Source (1)
• Transport equation, k-eigenvalue form

M = net loss operator

S(r) = fission neutron source

χ(E) = emission spectrum,
following analysis is same if replaced by

M ⋅Ψ(

!
r,E,Ω̂) = 1

K ⋅
χ(E)
4π

⋅S(
!
r)

M ⋅Ψ(
!
r,E,Ω̂) = Ω̂ ⋅∇Ψ(

!
r,E,Ω̂)+ ΣT(

!
r,E)Ψ(

!
r,E,Ω̂)

− d ′E d ˆ ′Ω ΣS(
!
r, ′E →E, ′Ω̂ → Ω̂∫∫) Ψ(

!
r, ′E , ˆ ′Ω)

S(
!
r) = d ′E d ˆ ′Ω νΣF(

!
r, ′E) Ψ(

!
r, ′E , ˆ ′Ω)∫∫

χ(E,
!
r) =

d ′E d ˆ ′Ω χ(′E →E) νΣF(
!
r, ′E) Ψ(

!
r, ′E , ˆ ′Ω)∫∫

d ′E d ˆ ′Ω νΣF(
!
r, ′E) Ψ(

!
r, ′E , ˆ ′Ω)∫∫

Fission Matrix Method for Monte Carlo Criticality Problems AMC-12 - 10LA-UR-18-20247

Integral Equation for the Neutron Source (2)

• Define Green’s function & integral transport equation

• Multiply by νΣF(r,E), integrate over E, Ω
• Define energy-angle averaged Source & Green’s function

 M ⋅G(
!
r0,E0,Ω̂0 →

!
r,E,Ω̂) = δ(

!
r −
!
r0) ⋅δ(E−E0) ⋅δ(Ω̂ − Ω̂0),

Ψ(
!
r,E,Ω̂) = 1

K ⋅ d
!
r0 dE0 dΩ̂0∫∫∫

χ(E0)
4π

⋅S(
!
r0) ⋅G(

!
r0,E0,Ω̂0 →

!
r,E,Ω̂)

S(!r) = 1

K
d!r0 ⋅S(

!r0) ⋅H(∫
!r0 →

!r)

H(!r0 →

!r) = dEdΩ̂ dE0 dΩ̂0∫∫∫∫ ⋅ νΣF(
!r,E)⋅ χ(E0)

4π
⋅G(!r0,E0,Ω̂0 →

!r,E,Ω̂)

S(
!
r) = d ′E d ˆ ′Ω ⋅ νΣF(

!
r, ′E) ⋅Ψ(

!
r, ′E , ˆ ′Ω)∫∫

H(r0àr) can be tallied directly in MC simulation

Fission Matrix Method for Monte Carlo Criticality Problems AMC-12 - 11LA-UR-18-20247

Integral Equation for the Adjoint Neutron Source (1)
• Adjoint transport equation, k-eigenvalue form

M† = adjoint to operator M

S† (r) = adjoint fission neutron source

Bell & Glasstone & others have shown that forward & adjoint K eigenvalues are the
same, K† = K, so will just use K in the following analysis.

M† ⋅Ψ†(

!
r,E,Ω̂) = 1

K ⋅
νΣF(

!
r,E)

4π
⋅S†(
!
r)

M† ⋅Ψ†(
!
r,E,Ω̂) = −Ω̂ ⋅∇Ψ†(

!
r,E,Ω̂)+ ΣT(

!
r,E)Ψ†(

!
r,E,Ω̂)

− d ′E d ˆ ′Ω ⋅ ΣS(
!
r,E→ ′E ,Ω̂→ ˆ ′Ω∫∫) ⋅Ψ†(

!
r, ′E , ˆ ′Ω)

S†(
!
r) = d ′E d ˆ ′Ω ⋅ χ(′E)

4π
⋅Ψ†(
!
r, ′E , ˆ ′Ω)∫∫

Fission Matrix Method for Monte Carlo Criticality Problems AMC-12 - 12LA-UR-18-20247

Integral Equation for the Adjoint Neutron Source (2)

• Adjoint Green’s function & integral transport equation

• Multiply by χ(E), integrate over E, Ω
• Define energy-angle averaged adjoint Source & Green’s function

 M
† ⋅G†(

!
r0,E0,Ω̂0 →

!
r,E,Ω̂) = δ(

!
r −
!
r0) ⋅δ(E−E0) ⋅δ(Ω̂ − Ω̂0)

Ψ†(
!
r,E,Ω̂) = 1

K ⋅ d
!
r0 dE0 dΩ̂0∫∫∫ ⋅ νΣF(

!
r0,E0) ⋅S

†(
!
r0) ⋅G

†(
!
r0,E0,Ω̂0 →

!
r,E,Ω̂)

S†(!r) = 1

K
d!r0 ⋅S†(!r0) ⋅H†(∫

!r0 →
!r)

H†(!r0 →

!r) = dEdΩ̂ dE0 dΩ̂0∫∫∫∫ ⋅ χ(E)
4π

⋅ νΣF(
!r0,E0) ⋅G†(!r0,E0,Ω̂0 →

!r,E,Ω̂)

S†(
!
r) = d ′E d ˆ ′Ω ⋅ χ(′E)

4π
⋅Ψ†(
!
′r , ′E , ˆ ′Ω)∫∫

Fission Matrix Method for Monte Carlo Criticality Problems AMC-12 - 13LA-UR-18-20247

Forward & Adjoint Integral Equations for Source

• Reciprocity for direct & adjoint Green’s function

Because of irreversible energy dependence, neither G nor G† is
symmetric in initial and final arguments. Same is true for H and H†

• Using reciprocity, comparing H and H† gives

• S and S† are bi-orthogonal

 G
†(
!
r0,E0,Ω̂0 →

!
r,E,Ω̂) = G(

!
r,E,Ω̂→

!
r0,E0,Ω̂0)

S(!r) = 1K d!r0 ⋅S(
!r0) ⋅ H(∫

!r0 →
!r)

S†(!r) = 1K d!r0 ⋅S†(!r0) ⋅H(∫
!r → !r0)

 H
†(!r0 →

!r) = H(!r → !r0)

H (!r0 →
!r) ≠ H (!r → !r0),

H†(!r0 →
!r) ≠ H†(!r → !r0)

(Kp −Kq) ⋅ d

!
r ⋅Sp(

!
r∫) ⋅Sq

†(
!
r) = 0

Fission Matrix Method for Monte Carlo Criticality Problems AMC-12 - 14LA-UR-18-20247

K-eigenvalue Form of Transport Equation

• Structure & properties
– 60+ years ago:

A single, non-negative, real, fundamental
eigenfunction & eigenvalue exist

– 50+ years ago:
For 1-speed or 1-group: A complete set of self-adjoint,
real eigenfunctions & discrete eigenvalues exists

– Energy-dependent transport equation is bi-orthognal,
forward & adjoint modes are orthogonal

– Nothing else proven, always assumed that higher-mode solutions exist

• In the present work based on the Fission Matrix:

– We provide evidence that higher modes exist, are real, have discrete
eigenvalues, and are very nearly self-adjoint (for reactor-like problems)

– Approach is similar to Birkhoff’s original proof for fundamental mode

– This has never been done before using continuous-energy Monte Carlo

M ⋅Ψ(

!
r,E,Ω̂) = 1

K ⋅
χ(E)
4π

⋅S(
!
r)

Fission Matrix Method for Monte Carlo Criticality Problems AMC-12 - 15LA-UR-18-20247

Forward & Adjoint
Fission Matrix

Equations

Fission Matrix Method for Monte Carlo Criticality Problems AMC-12 - 16LA-UR-18-20247

Forward Fission Matrix Equations (1)

• Segment the physical problem into N disjoint spatial regions
– Initial regions (r0) for fission neutron source emission
– Final regions (r) for production of a next-generation fission neutron

• Integrate the forward integral fission source equation over r0 & r
– Initial: r0∈ VJ, Final: r ∈ VI

Exact equations for integral source SI
N = # spatial regions, F = N x N matrix, nonsymmetric

SI = 1
K ⋅ FI,J ⋅SJ

J=1

N

∑

FI,J = d!r

!r∈VI
∫ d!r0

!r0∈VJ
∫

S(!r0)
SJ

⋅H(!r0 →
!r) SJ = S(!′r)d!′r

!
′r ∈VJ
∫

Fission Matrix Method for Monte Carlo Criticality Problems AMC-12 - 17LA-UR-18-20247

Forward Fission Matrix Equations (2)

• FI,J = next-generation fission neutrons produced in region I,
for each average fission neutron starting in region J
(JàI)

• In the equation for F,
– S(r0)/SJ is a local weighting function within region J
– As VJ à 0:

• S(r0) à SJ / VJ
• Discretization errors à 0
• Can accumulate tallies of FI,J even if not converged

• FI,J tallies:
– Previous F-matrix work: tally during neutron random walks
– Present F-matrix work: tally only point-to-point,

using fission-bank in master proc (~free)
• Eliminates excessive communications for parallel
• Provides more consistency, FI,J nonzero only in elements with actual sites
• Analog-like treatment, better for preserving overall balance

Fission Matrix Method for Monte Carlo Criticality Problems AMC-12 - 18LA-UR-18-20247

Adjoint Fission Matrix Equations

• Segment the physical problem into N disjoint spatial regions
– Initial regions: r0∈ VJ, Final regions: r ∈ VI

• Integrate the adjoint integral fission source equation over r0 & r

Exact equations for adjoint integral source S†
I

S†
I = 1

K ⋅ F†
I,J ⋅S

†
J

J=1

N

∑

F†

I,J = d!r
!r∈VI
∫ d!r0

!r0∈VJ
∫

S†(!r0)
S†

J
⋅H(!r → !r0) S†

J = S†(!′r)d!′r
!
′r ∈VJ
∫

Fission Matrix Method for Monte Carlo Criticality Problems AMC-12 - 19LA-UR-18-20247

Relationship Between Forward & Adjoint Fission Matrix
• FI,J = next-generation fission neutrons produced in region I,

for each average fission neutron starting in region J (JàI)

• Compare FI,J & F†
J,I , interchange integration order for F†

J,I

• If the spatial discretization is fine enough that

then
• Discretization errors from neglecting weights à 0
• Can accumulate tallies of FI,J even if not converged
• For fine spatial mesh, F† = transpose of F

FI,J = dr
r∈VI
∫ dr0

r0∈VJ
∫ ⋅

S(r0)
SJ

 ⋅ H(r0 →
r)

F†
J,I = dr0

r0∈VJ
∫ dr

r∈VI
∫ ⋅S

†(r)
S†
I

⋅ H(r0 →
r)

S(r0)
SJ VJ

≈1 for r0 ∈VJ and
S†(r)
SI VI

≈1 for r ∈VI

F† = FT

Same form, but
different spatial
weighting functions

Fission Matrix Method for Monte Carlo Criticality Problems AMC-12 - 20LA-UR-18-20247

Monte Carlo Estimation of Fission Matrix
Monte Carlo K-effective Calculation
1. Start with fission source & k-eff guess
2. Repeat until converged:

• Simulate neutrons in cycle
• Save fission sites for next cycle
• Calculate k-eff, renormalize source

3. Continue iterating & tally results

For Fission Matrix calculation
During standard k-eff calculation, at the end of each cycle:

• Estimate FI,J tallies from start & end points in fission bank (~ free)
• Accumulate FI,J tallies, over all cycles (even inactive cycles)

After Monte Carlo completed:
• Normalize FI,J accumulators, divide by total sources in J regions
• Find eigenvalues/vectors of F matrix (power iteration, with deflation)

Fission Matrix Method for Monte Carlo Criticality Problems AMC-12 - 21LA-UR-18-20247

Fission Matrix – Sparse Structure

• For a spatial mesh with N regions, F matrix is N x N
– 100x100x100 mesh ➜ F is 106 x 106 ➜ 8 TB memory
– In the past, memory storage was always the major limitation for F

matrix

• Compressed row storage scheme
– Don’t store near-zero elements, general sparsity
– Reduced F matrix storage, no approximation
– Can easily do 100x100x100 mesh on 8 GB Mac

2D PWR - 15x15x1 mesh, N=225 2D PWR - 30x30x1 mesh, N=900

Fission Matrix Method for Monte Carlo Criticality Problems AMC-12 - 22LA-UR-18-20247

Fission Matrix – Sparse Storage

• Compressed Row Storage Scheme (CRS)
– General sparsity, no approximations or assumptions
– N = Nx x Ny x Nz mesh cells
– (iS , jS, kS) → (iT , jT, kT) ➜ J → I J = iS + (jS-1)Nx + (kS-1)NxNy

I = iT + (jT-1)Nx + (kT-1)NxNy
– Only the nonzero F(I,J) entries are stored.
– MC tallies: If element exists – add to it; if not – insert it

– L(I) array entries point to the start of a list of J indices and
corresponding nonzero F(I,J) tallies

– Highly optimized tally coding, typically requires less than 1 second at
the end of each batch in the Monte Carlo simulation.

L1 L2 L3 . . . LN LN+1

J1 J2 J3 J4 J5 J6 J7 J8 J9 ... JM
F1 F2 F3 F4 F5 F6 F7 F8 F9 ... FM

Fission Matrix Method for Monte Carlo Criticality Problems AMC-12 - 23LA-UR-18-20247

Example – Sparse-Matrix * Vector

! multiply a fmat matrix times a vector, return result in y vector
type(fission_matrix), intent(in) :: fmat ! sparse fission matrix
real(R8), intent(in) :: x(:) ! vector in
real(R8), intent(out) :: y(:) ! vector out, result
integer(I8) :: k, i
real(R8) :: t

!$OMP PARALLEL DO PRIVATE(t, k) ß different thread for each row

do i = 1, fmat%n
t = 0.0d+00
do k = fmat%L(i), fmat%L(i+1)-1 ß k is location of J,R row data

t = t + fmat%R(k) * x(fmat%J(k))
enddo
y(i) = t

enddo
!$OMP END PARALLEL DO

Fission Matrix Method for Monte Carlo Criticality Problems AMC-12 - 24LA-UR-18-20247

Fission Matrix Eigenmodes
&

Eigenvalue Spectrum

Fission Matrix Method for Monte Carlo Criticality Problems AMC-12 - 25LA-UR-18-20247

K-eigenvalue Form of Transport Equation

• Structure & properties
– 60+ years ago:

A single, non-negative, real, fundamental
eigenfunction & eigenvalue exist (Birkhoff)

– 50+ years ago:
For 1-speed or 1-group: A complete set of self-adjoint, real
eigenfunctions & discrete eigenvalues exists (Lehner & Wing, Sahni)

– Energy-dependent transport equation is bi-orthognal,
forward & adjoint modes are orthogonal

– Nothing else proven, always assumed that higher-mode solutions exist

• In the present work based on the Fission Matrix:

– We provide evidence that higher modes exist, are real, have discrete
real eigenvalues, and are very nearly self-adjoint (for reactor-like problems)

– Approach is similar to Birkhoff’s original proof for fundamental mode

– This has never been done before using continuous-energy Monte Carlo

M ⋅Ψ(

r,E,Ω̂) = 1

K ⋅
χ(E)
4π

⋅S(

r)

Fission Matrix Method for Monte Carlo Criticality Problems AMC-12 - 26LA-UR-18-20247

Higher Eigenmode Analysis with the Fission Matrix

• Run Monte Carlo, get fission matrix,
then solve for eigenvalues & eigenfunctions:
– Matlab, if full-storage F matrix can fit in memory
– Power iteration with deflation, preserves sparse format
– Implicitly Restarted Arnoldi Method (IRAM), preserves sparse format

– F is nonsymmetric
– Sn is a right eigenvector of F, S†

n is a left eigenvector of F
– Sn and S†

m are biorthogonal

Sn = 1

Kn ⋅F ⋅

Sn k0 > k1 > k1 ... > kN

S†
n = 1

Kn ⋅F
T ⋅

S†
n n = 0,1,...N

(kp − kq) ⋅(

Sp ⋅

Sq
†) = 0

Fission Matrix Method for Monte Carlo Criticality Problems AMC-12 - 27LA-UR-18-20247

Whole-core 2D PWR Model

2D PWR (Nakagawa & Mori model)

• 48 1/4 fuel assemblies:
– 12,738 fuel pins with cladding
– 1206 1/4 water tubes for

control rods or detectors

• Each assembly:
– Explicit fuel pins & rod channels
– 17x17 lattice
– Enrichments: 2.1%, 2.6%, 3.1%

• Dominance ratio ~ .98

• Calculations used whole-core model,
symmetric quarter-core shown at right

• ENDF/B-VII data, continuous-energy

Fission Matrix Method for Monte Carlo Criticality Problems AMC-12 - 28LA-UR-18-20247

Fission Matrix Analysis of PWR Model

• Next 2 slides:

– Spatial mesh for fission matrix:

• 8 x 8 x 1 mesh per assembly
• 120 x 120 x 1 overall mesh
• 14,400 spatial regions

– Eigenvalues & eigenfunctions from Matlab:

• For this specific fission matrix size of 14,400 x 14,400
• Fission matrix has 207 M elements = 1.6 GB
• Use Matlab to get all 14,400 eigenvalues & eigenvectors

– Expensive, time-consuming – requires nonsymmetic eigensolver

Fission Matrix Method for Monte Carlo Criticality Problems AMC-12 - 29LA-UR-18-20247

PWR – Eigenmodes for 120x120x1 Spatial Mesh

n Kn
0 1.29480
1 1.27664
2 1.27657
3 1.25476
4 1.24847
5 1.24075
6 1.22160
7 1.22141
8 1.19745
9 1.19743
10 1.18825
11 1.18305
12 1.15619
13 1.14633
14 1.14617
15 1.14584

Fission Matrix Method for Monte Carlo Criticality Problems AMC-12 - 30LA-UR-18-20247

PWR – First 100 Eigenmodes, with More Neutrons

Fission Matrix Method for Monte Carlo Criticality Problems AMC-12 - 31LA-UR-18-20247

Fission Matrix Analysis of PWR Model

• Following 2 slides:

– Vary the spatial discretization

– Find eigenvalue spectrum for each discretization

– Examine eigenvalue spectrum vs number of spatial regions
• N regions ⇒ N eigenvalues
• For small N, fewer eigenvalues to represent problem, inaccurate

– As N increases, spectrum extends & converges smoothly
• No anomalies, no oscillations
• Provides measure of adequate mesh refinement

for fission matrix accuracy

Fission Matrix Method for Monte Carlo Criticality Problems AMC-12 - 32LA-UR-18-20247

Eigenvalue Spectra with Varying Meshes
Real(ki)

14400
3600

900

225
100

25

N = number of mesh regions

(Fission matrix size = N x N)

Ki

i

Fission Matrix Method for Monte Carlo Criticality Problems AMC-12 - 33LA-UR-18-20247

Spectrum Convergence from Mesh Refinement

Mesh Regions K0

5x5 = 25 1.29444
10x10 = 100 1.29453
15x15 = 225 1.29469
30x30 = 900 1.29477
60x60 = 3600 1.29479

120x120 = 14400 1.29480

K0

K1
K2

K3
K4

K5

K6
K7

K8
K9

For fine-enough spatial mesh,
eigenvalue spectrum converges

Fission Matrix Method for Monte Carlo Criticality Problems AMC-12 - 34LA-UR-18-20247

Are the Eigenvalues Real or Complex ?

Real(ki):

Imag(ki):

5 M neutrons/cycle
500K neutrons/cycle

The appearance of complex
eigenvalues appears to be strictly
an artifact of Monte Carlo
statistical noise

When more neutrons/cycle are
used to decrease statistical noise,
complex components diminish or
vanish

The first few 100s or 1000s of
discrete eigenvalues are real, and
presumably all would be with
sufficiently large neutrons/cycle

120 by 120 Spectrum, Varying Neutrons/cycle

Fission Matrix Method for Monte Carlo Criticality Problems AMC-12 - 35LA-UR-18-20247

PWR2D - Eigenvalues

Fission Matrix
30 x 30 mesh

772 Eigenvalues

2500 M neutrons

Kn – real part
Kn – imaginary part

Fission Matrix Method for Monte Carlo Criticality Problems AMC-12 - 36LA-UR-18-20247

PWR2D – Imaginary Part of Eigenvalues

Fission Matrix
30 x 30 mesh

772 Eigenvalues

5 M neutrons
250 M neutrons

2500 M neutrons

Kn – imaginary part

Mode number, 0 ... 771 →

.006

-.004

-.002

0

.002

.004

-.006

Fission Matrix Method for Monte Carlo Criticality Problems AMC-12 - 37LA-UR-18-20247

PWR – Inner Products of Forward Eigenmodes

Inner products of
forward eigenfunctions

Strictly, eigenfunctions of the transport equation are bi-orthogonal.
As shown above, forward eigenfunctions are very nearly orthogonal.

Fission Matrix Method for Monte Carlo Criticality Problems AMC-12 - 38LA-UR-18-20247

PWR2D – Forward & Adjoint Source Eigenmodes

• Fundamental eigenmode Forward Adjoint

– Forward shows spatial detail,
much like thermal flux

– Adjoint is smoother,
much like fast flux

• Inner products of modes: S†
n • Sm and Sn• Sm

forward mode number →

←
 a

dj
oi

nt
 m

od
e

nu
m

be
r

←
 fo

rw
ar

d
m

od
e

nu
m

be
r

forward mode number →

Fission Matrix Method for Monte Carlo Criticality Problems AMC-12 - 39LA-UR-18-20247

Forward & Adjoint Source Eigenmodes

0 54321

Forward source modes

Adjoint source modes

2D PWR problem – 2,500 M neutrons,
tally mesh 120x120x1, matrix NxN N=14,400

Fission Matrix Method for Monte Carlo Criticality Problems AMC-12 - 40LA-UR-18-20247

• Forward flux modes
– Calculated by running fixed source calculations

using forward fission source eigenfunctions

• Source for mode n is sampled in an analog manner
– Point within mesh cell is resampled until within fissionable material
– Flag is added for sign of particle weight
– Fission is treated as absorption (NONU card)

• Track-length flux mesh tally module FMESH used

Calculation of Forward Flux Modes

n = 0, ... N

Fission Matrix Method for Monte Carlo Criticality Problems AMC-12 - 41LA-UR-18-20247

Forward Flux Modes for 2D PWR

Thermal flux modes (0 - 0.625 eV) Fast flux modes (0.625 eV - 20 MeV)

• Source modes from fission matrix
- 500 cycles, 500k batch size
- 50x50x1 mesh, 2500x2500 fission matrix

• Fixed source calculations
- 500k histories per mode, minutes

Fission Matrix Method for Monte Carlo Criticality Problems AMC-12 - 42LA-UR-18-20247

PWR – with Perturbations

• Insert SS304 Control Rods in each assembly in quadrant of core

Fission Source
Eigenmodes

Original Perturbed

Original Perturbed

Fission Matrix Method for Monte Carlo Criticality Problems AMC-12 - 43LA-UR-18-20247

PWR - Convergence Acceleration Using Fission Matrix

• Fission matrix can be used to accelerate convergence of the
MCNP neutron source distribution during inactive cycles

• Requires only fundamental forward mode
• Very impressive convergence improvement

standard
MC

standard
MC

keff

Hsrc

accelerated using F matrix

accelerated using F matrix

Fission Matrix Method for Monte Carlo Criticality Problems AMC-12 - 44LA-UR-18-20247

Advanced Test Reactor

S. S. Kim, B. G. Schnitztler, et. al., “Serpentine Arrangement of Highly Enrichment Water-Moderated Uranium-
Aluminide Fuel Plates Reflected by Beryllium”, HEU-MET-THERM-022, Idaho National Laboratory (September
2005).

Serpentine Arrangement of Highly Enrichment Water-Moderated
Uranium-Aluminide Fuel Plates Reflected by Beryllium

Fission Matrix Method for Monte Carlo Criticality Problems AMC-12 - 45LA-UR-18-20247

ATR - Eigenmodes (100x100 spatial mesh)

Fission Matrix Method for Monte Carlo Criticality Problems AMC-12 - 46LA-UR-18-20247

Conclusions
&

Future Work

Fission Matrix Method for Monte Carlo Criticality Problems AMC-12 - 47LA-UR-18-20247

Conclusions

• Derived theory underlying fission matrix method
– Rigorous Green’s function approach, no approximations
– Specific conditions on spatial resolution required for fission

matrix accuracy
– If spatial resolution fine enough, adjoint fission matrix identical

to transpose of forward fission matrix

• Applied to realistic continuous-energy MC analysis of typical
reactor models. Numerical evidence that:
– Infinite set of discrete, real-valued eigenvalues & eigenfunctions

exist for the integral fission neutron source & adjoint
– As spatial resolution is refined, eigenvalue spectrum converges

smoothly
– While forward & adjoint are biorthogonal, forward modes are

very nearly self-adjoint (for reactor-like problems)

Fission Matrix Method for Monte Carlo Criticality Problems AMC-12 - 48LA-UR-18-20247

Conclusions

• Fission matrix capability has been added to MCNP (R&D for now)

• Tested on variety of real problems (3D, continuous-energy)

• Can obtain fundamental & higher eigenmodes

– Empirical evidence for: existence of higher modes,
real, discrete eigenvalues,
very nearly orthogonal eigenmodes

(for reactor-like problems)

– Higher eigenmodes are important for
BWR void stability, higher-order perturbation theory,
Xenon oscillations, quasi-static transient analysis,
control rod worth, correlation effects on statistics,
accident behavior, etc., etc., etc.

• Can provide very effective acceleration of source convergence

Fission Matrix Method for Monte Carlo Criticality Problems AMC-12 - 49LA-UR-18-20247

Future Work

• Capabilities discussed in this talk are NOT in MCNP6.2 –
targeted for release in later update

• Use fission matrix to accelerate source convergence
– Already demonstrated; very effective; needs work to automate

• Use fission matrix for automatic, on-the-fly determination of
source convergence
– Automate the determination of “inactive cycles”

• Use fission matrix to assess problem coverage
– Need more neutrons/cycle to get adequate tallies?

• Higher modes can be used to reduce/eliminate cycle-to-cycle
correlation bias in statistics
– Replicas & ensemble statistics may be better, for exascale computers

• Apply higher-mode analysis to reactor physics problems
– Xenon & void stability, slow transients, etc.

Fission Matrix Method for Monte Carlo Criticality Problems AMC-12 - 50LA-UR-18-20247

References

– Carney, Brown, Kiedrowski, Martin, “Fission Matrix Capability for MCNP Monte Carlo”, TANS
107, San Diego, 2012

– Brown, Carney, Kiedrowski, Martin, “Fission Matrix Capability for MCNP, Part I - Theory”,
M&C-2013, 2013

– Carney, Brown, Kiedrowski, Martin, “Fission Matrix Capability for MCNP, Part II - Applications”,
M&C-2013, 2013

– Brown, Carney, Kiedrowski, Martin, “Fission Matrix Capability for MCNP Monte Carlo”,
SNA+MC-2013

– Carney, Brown, Kiedrowski, Martin, “Theory & Application of the Fission Matrix Method for
Continuous-Energy Monte Carlo", Annals Nuc. En. 73, 423-431 (2014)

Fission Matrix Method for Monte Carlo Criticality Problems AMC-12 - 51LA-UR-18-20247

Questions ?

Fission Matrix Method for Monte Carlo Criticality Problems AMC-12 - 52LA-UR-18-20247

Continuously Varying Materials & Tallies AMC-13 - 1LA-UR-18-20247

Forrest B. Brown

National Laboratory Professor, UNM-NE
Senior R&D Scientist, Monte Carlo, LANL

Continuously Varying
Material Properties & Tallies
for Monte Carlo Calculations

Advanced
Computational

Methods for
Monte Carlo
Calculations

Continuously Varying Materials & Tallies AMC-13 - 2LA-UR-18-20247

Abstract

Continuously Varying Material Properties and Tallies
For Monte Carlo Calculations

Forrest B. Brown (LANL), David P. Griesheimer, & William R. Martin (U. Mich)

Monte Carlo methods for particle transport are highly regarded for their continuous treatment
of particle energy and angular dependence, and for their very general geometric representations.
However, all of the production Monte Carlo codes available today make use of a zero-th order
approximation for representing material densities and cell flux tallies, i.e., constant over a
geometric cell. Recent work has shown that both of these limitations can be overcome, so that
continuously varying spatial representations can be extended to material properties and tallies.

In the present work, we provide derivations of the new random sampling methods and
mathematical procedures and then demonstrate the feasibility of these new methods in a 1-D
Monte Carlo code. We have used this code first to verify that the continuous representation was
implemented correctly, and then to investigate a number of deep penetration problems and
eigenvalue problems to examine the benefits of a continuous representation.

The theory and numerical results described herein demonstrate conclusively that it is now
feasible to implement Monte Carlo codes with continuously varying particle energy and angular
dependence, continuously varying material properties, and continuously varying tallies. The
continuous representation can greatly reduce modeling difficulties, can significantly reduce the
number of cells required for accurate results, and for complex problems may even reduce the
computation time.

Continuously Varying Materials & Tallies AMC-13 - 3LA-UR-18-20247

Outline

• Introduction

• Varying Material Properties
– Stepwise Approximation
– Woodcock Tracking
– Direct Numerical Sampling
– Piecewise Legendre Expansion

• Continuous Tallies
– Stepwise Approach
– Piecewise Legendre Expansion

• Numerical Examples
– Fixed Source Example
– Criticality Example
– Timing & Complexity

• Conclusions

Continuously Varying Materials & Tallies AMC-13 - 4LA-UR-18-20247

Introduction

• Monte Carlo codes such as MCNP5 are continuous in
– Particle properties: position, direction, & energy
– Collision physics: energy & angle

• Monte Carlo codes permit very general 3D geometries
& cross-section data representations

• BUT, Monte Carlo codes use zero-th order representations
of tallies and material properties:
– Material properties are assumed constant within each cell
– Tally bins provide average scores within each cell

We should be able to do better than that !

This work demonstrates that we can.

Continuously Varying Materials & Tallies AMC-13 - 5LA-UR-18-20247

Varying Material Properties

For many problems of interest, ΣT varies within a cell

• Charged particle transport
– Continuous slowing down along

the flight path due to interactions
with electron field in material

– ΣT increases along the flight path

• Atmospheric transport
– Air density varies with altitude

• Depleted reactor
– Fuel & poison distribution varies

due to burnup

ΣT(s)

Flight distance, s

Σ(h)

Altitude, h

ΣB10

Radius in control rod, r

Continuously Varying Materials & Tallies AMC-13 - 6LA-UR-18-20247

Conventional techniques for handling varying material properties:

• Stepwise approximation
– Subdivide geometry
– Constant material properties

within each step

• Woodcock tracking
– Also called delta tracking, fast tracking, pseudo-collision method, hole

tracking, …
– Involves biased sampling the flight distance using a larger ΣT,

followed by rejection sampling to assure a fair game

Varying Material Properties

ΣT(s)

Flight distance, s

Continuously Varying Materials & Tallies AMC-13 - 7LA-UR-18-20247

Woodcock Tracking

• Introduce Σ for a "delta" collision
– Let Σ* = ΣT(s) + Σδ(s) = constant,

where Σδ (s) ≥ 0

Σδ (s) = cross-section for "delta" collision -
no change in E, (u,v,w), or wgt

Σ* ≥ ΣT(s)

– ΣT(s) / Σ* = probability of a "real" collision
– Σδ (s) / Σ* = probability of a "delta" collision

• Basic idea: Sample flight distance using Σ*,
move the particle to the collision point,
then reject collision point if ξ > ΣT(s) / Σ*

• Using Σ* rather than ΣT(s) gives an interaction probability per unit
distance that is too large, hence a flight distance that is too short.
Rejection scheme compensates for this.

ΣT(s)

Flight distance, s

Σ*

Continuously Varying Materials & Tallies AMC-13 - 8LA-UR-18-20247

Limitations on Conventional Techniques

• Stepwise approximation
– How many steps? How small?
– Accuracy vs number of steps
– Need to perform convergence studies: results vs stepsize
– Tedious to set up
– More cells --> increases time for tracking & boundary crossing

• Woodcock tracking
– Inefficient if Σ* >> ΣT(s) for most values of s
– Can't use pathlength estimators for tallies

Alternatives ?
Direct numerical sampling method

(Brown & Martin, Gatlinburg M&C Topical, 2003)

Continuously Varying Materials & Tallies AMC-13 - 9LA-UR-18-20247

ξ = Σ(x) ⋅exp[− Σ(′x) d ′x]dx

x0

x

∫
0

s

∫

Sampling the flight distance in varying media

• Random sampling of particle free-flight distance in media where
the cross-sections are constant during the particle flights, solve
for s:

• Random sampling of particle free-flight distance in media where
the cross-sections vary during the particle flights, solve for s:

ξ = Σ(x) ⋅exp[−Σx]dx

0

s

∫

Continuously Varying Materials & Tallies AMC-13 - 10LA-UR-18-20247

Sampling the flight distance in varying media

• Optical depth along flight path

ΣT(x) is finite, ΣT(x) ≥ 0

Note that

• To explicitly allow for the case of no collision,

PNC = probability of no collision

• Probability density function (pdf) for the flight distance s:

Where

�

f (s) = PNC ⋅δ(s = ∞) + (1− PNC) ⋅
1
G

dτ
ds

e−τ (s)

�

τ(s) = ΣT (′ x)d ′ x
x

x+s

∫

�

dτ(s)
ds

= ΣT (x + s), 0 ≤ dτ
ds

≤ ∞

�

PNC = e−τ (∞)

�

G = dτ(s)
ds

e−τ (s)ds = 1− e−τ (∞) = 1− PNC
0

∞

∫

Continuously Varying Materials & Tallies AMC-13 - 11LA-UR-18-20247

Sampling the flight distance in varying media

• Random sampling of the Monte Carlo free-flight path requires
solving the following equation for s, the flight path:

• Common case: ΣT independent of x

With solution:

�

ξ = f (x)dx
0

s

∫
or

ξ = PNC ⋅H (s,∞) + (1− PNC) ⋅
1
G

⋅ 1− e−τ (s)()

�

τ(s) = ΣT ⋅ s, dτ
ds

= ΣT , PNC = 0, G = 1, f (s) = ΣT ⋅ e−ΣT ⋅s

�

s = − ln(1− ξ)
ΣT

Continuously Varying Materials & Tallies AMC-13 - 12LA-UR-18-20247

Sampling the flight distance in varying media
Direct Numerical Sampling for the free-flight distance:

Step [1]
If ξ < PNC, Then: No collision, set s=∞, exit

Otherwise: Do Steps 2 & 3
Step [2]

Define

Sample by solving

That is, sample from a truncated exponential PDF:

Step [3]
Solve for s:

Analytic solution if possible, otherwise use Newton iteration

�

ˆ τ = τ(s)

�

ˆ τ

�

ξ = 1
G e−τdτ

0

ˆ τ

∫ , with 0 ≤ ˆ τ ≤ τ(∞)

�

ˆ τ = − ln(1− ξ⋅G)
ΣT

�

ˆ τ = τ(s) = ΣT (x + ′ s)d ′ s
0

s

∫

Continuously Varying Materials & Tallies AMC-13 - 13LA-UR-18-20247

Sampling the flight distance in varying media

Newton iteration to numerically solve for s:

Notes:
– Because g'<0, g(s) is monotone & there can be only one root
– For cases where ΣT>0, Newton iteration guaranteed to converge
– If ΣT(x)=0 or very small, g' may be 0, leading to numerical difficulties
– Remedied by combining Newton iteration with bisection if g' near zero
– Typically only 1-5 iterations needed to converge s to within 10-6

�

s0 = ˆ τ /ΣT (x0)
n = 0
Iterate :

n = n+ 1
g = ˆ τ − τ(sn−1)
′ g = dg / ds = −ΣT (x0 + sn−1)

sn = sn−1 − g / ′ g

Stop if sn − sn−1 < ε

Continuously Varying Materials & Tallies AMC-13 - 14LA-UR-18-20247

Verification of Direct Numerical Sampling

• Monte Carlo transport of particles through a 1-D slab of thickness 2 units.

• Consider only transmission through the slab, ignoring scattering.

• Table (1) shows 7 different forms of spatial variation in the cross-section
which were used for the test problem.

• Figures (1) through (7) show the cross-section variation over the
thickness of the slab (labelled "sig"), the pdf at position x=0 for the cross-
section variation in each test case (labelled "pdf"), and the results of
using the direct numerical sampling procedure to perform 1,000,000
samples of the free-flight distance for each case (labelled "sampled").

• The sampled results were binned in 100 bins of width 0.02.

• In Figures (1)-(7), it can be seen that the distributions of sampled results
for the free-flight distance agree completely with the exact pdf’s in all
cases, verifying that the sampling method is correct.

Continuously Varying Materials & Tallies AMC-13 - 15LA-UR-18-20247

Table 1. Cross-section Variation for Test Cases

Continuously Varying Materials & Tallies AMC-13 - 16LA-UR-18-20247

Figure 1. Test Case - 1

1. Constant Cross-section

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.5 1 1.5 2

x

sig
pdf
sampled

Continuously Varying Materials & Tallies AMC-13 - 17LA-UR-18-20247

Figure 2. Test Case - 2

2. Linear Decrease

0

0.5

1

1.5

2

2.5

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x

sig
pdf
sampled

Continuously Varying Materials & Tallies AMC-13 - 18LA-UR-18-20247

Figure 3. Test Case - 3

3. Linear Increase

0

0.5

1

1.5

2

2.5

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x

sig
pdf
sampled

Continuously Varying Materials & Tallies AMC-13 - 19LA-UR-18-20247

Figure 4. Test Case - 4

4. Exponential Decrease

0

0.5

1

1.5

2

2.5

3

3.5

4

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x

sig
pdf
sampled

Continuously Varying Materials & Tallies AMC-13 - 20LA-UR-18-20247

Figure 5. Test Case - 5

5. Exponential Increase

0

1

2

3

4

5

6

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x

sig
pdf
sampled

Continuously Varying Materials & Tallies AMC-13 - 21LA-UR-18-20247

Figure 6. Test Case - 6

6. Sharp Gaussian

-2

0

2

4

6

8

10

12

14

16

18

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x

sig
pdf
sampled

Continuously Varying Materials & Tallies AMC-13 - 22LA-UR-18-20247

Figure 7. Test Case - 7

7. Broad Gaussian

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x

sig
pdf
sampled

Continuously Varying Materials & Tallies AMC-13 - 23LA-UR-18-20247

Compare: Direct Numerical, Delta-tracking, & Substepping

• Multiple collisions were followed

• Transmission through the slab was computed for each test case

• For delta-tracking, the actual value of the maximum cross-section
over the interval was used, rather than an arbitrary guess.

• For the substepping method, equal-thickness subdivisions of the
slab were used, with the number of subdivisions determined by
trial and error to be the minimum required to match the accuracy
of the other two methods

• 1,000,000 histories were followed for each method in each of the
test cases. Results are given in Table (2).

• Accuracy of all 3 methods is comparable, given that sufficient
substeps are used for the substepping method. The number of
collisions and the transmission at the right slab boundary are the
same within statistics.

Continuously Varying Materials & Tallies AMC-13 - 24LA-UR-18-20247

Compare: Direct Numerical, Delta-tracking, & Substepping
Table 2

Continuously Varying Materials & Tallies AMC-13 - 25LA-UR-18-20247

Compare: Direct Numerical, Delta-tracking, & Substepping

• Function Evaluations per Collision:
– average number of flights per collision for the substepping method
– average number of pseudocollisions (delta + real) for each real collision for the delta-tracking method
– average number of Newton iterations per collision for the direct numerical method.

• Both delta-tracking and the direct method are significantly more effective than substepping
• Delta-tracking and the direct method are roughly comparable, with delta-tracking being faster

when there is little variation in the cross-section and the direct method being faster when there
is more variation in the cross-section.

• Direct method should be viewed as an alternative to delta-tracking if there are large variations
in cross-section.

Continuously Varying Materials & Tallies AMC-13 - 26LA-UR-18-20247

Varying Material Properties

• Represent material density by high-order, orthogonal polynomial
expansion within each cell
– Legendre polynomial representation for material density in cell

• Sample the free-flight distance to next interaction using a direct
numerical sampling scheme (Brown & Martin)

– Use Newton iteration to solve nonlinear equation for flight path

�

ρ(x) = 2n +1
2 ⋅ an ⋅Pn

2
Δx (x− xmin)− 1[]

n =0

N
∑

�

an = 2
Δx ρ(x)Pn

2
Δx (x− xmin)− 1[]dx

xmin

xmax
∫

�

Σ(x) = ρ(x)
ρ0

⋅ Σ0, τ(s) = Σ0
ρ0

⋅ ρ(′ x) d ′ x
µ

x

x+s

∫

Continuously Varying Materials & Tallies AMC-13 - 27LA-UR-18-20247

• Conventional Monte Carlo codes tally integral results
– Tallies summed into bins
– Zero-th order quantities within each bin
– Stepwise approximation to results

– Unfortunately, by dividing the tally into bins we increase the variance of
the estimate because relatively few histories score in an individual bin.

Continuously Varying Tallies

x

Φ(x)

Standard Tally± σ

x

Φ(x)

5 Bin Histogram Tally± σ

Continuously Varying Materials & Tallies AMC-13 - 28LA-UR-18-20247

Continuously Varying Tallies

• An alternative to the histogram tally is the Functional Expansion
Tally (FET).
– Tally the zeroth spatial moment of flux in each cell, AND higher

moments with respect to some set of basis functions
– Moments can then be used for a functional expansion of the flux

distribution within the tally region

• FET, Higher order tallies
– Represent results by high-order, orthogonal polynomial expansion

within each cell
– Make tallies for expansion coefficients
– Legendre polynomial representation for continuous tallies

�

Φ(x) = 2n +1
2 ⋅ bn ⋅Pn

2
Δx (x− xmin)− 1[]

n =0

N
∑

�

bn = 2
Δx Φ(x)Pn

2
Δx (x− xmin)− 1[]dx

xmin

xmax
∫

Continuously Varying Materials & Tallies AMC-13 - 29LA-UR-18-20247

Continuously Varying Tallies

• Make tallies for the Legendre coefficients at each collision or
flight:

• At collisions, tally for n=1..N

• At flights, tally for n=1,N

• Reconstruct Φ(x) and σΦ
2(x) from tallied coefficients

�

bn = 2
Δx Φ(x)Pn

2
Δx (x− xmin)− 1[]dx

xmin

xmax
∫

�

wgt
ΣT

⋅Pn
2
Δx (x− xmin)− 1[]

�

wgt ⋅ 1
µ

Pn
2
Δx (′ x − xmin)− 1[]

x

x+s

∫ d ′ x

Continuously Varying Materials & Tallies AMC-13 - 30LA-UR-18-20247

Continuously Varying Tallies

• FETs will have some amount of statistical uncertainty
• FET uncertainty in any expansion coefficient can be estimated

with the sample variance statistic:

• It is also possible to derive a pointwise estimate of the variance in
the functional approximation itself.

()

()

2
2

,
1 12

ˆ

1 ˆ()
ˆ

1

i

n

CN

i c n i n
i c

a

w x a
N

N N

ψ
σ = =

⎛ ⎞
−⎜ ⎟

⎝ ⎠=
−

∑ ∑

!
2

0 0

ˆ ˆ() () ()
1 n m

M M

a a n m n m
n m

Nx k k x x
Nφ

σ σ ψ ψ
= =

=
− ∑∑

Sample covariance between
coefficients ân and âm

Continuously Varying Materials & Tallies AMC-13 - 31LA-UR-18-20247

Numerical Examples

• Demonstration Monte Carlo code
– 1D slab geometry
– Piecewise Legendre expansion for material properties in each cell
– Piecewise Legendre expansion for pathlength tallies within each cell
– 5th order Legendre expansions, trivial to go higher

• Examples
– A: Fixed source, beam into slab
– B: Criticality, reflected reactor

• Procedure
– Calculations with continuous materials + continuous tallies
– Calculations with stepwise approximations: 2, 4, 8, 16, 32

Continuously Varying Materials & Tallies AMC-13 - 32LA-UR-18-20247

Varying Materials & Tallies - Example A

• Beam source into slab
– Vacuum boundaries
– Density in slab varies from 0 at edges to 10 at center
– ΣT = 1.00, Σs = 0.99, ΣA = 0.01

0 2x

Continuously Varying Materials & Tallies AMC-13 - 33LA-UR-18-20247

Varying Density - Problem A

Continuously Varying Materials & Tallies AMC-13 - 34LA-UR-18-20247

Continuous Tallies - Problem A

Continuously Varying Materials & Tallies AMC-13 - 35LA-UR-18-20247

Varying Materials & Tallies - Example B

• Eigenvalue calculation - depleted core with reflector
– Density varies quadratically in core: .25 at center, 2.25 at edges
– Constant density in reflector, 1.0
– Core: ΣT = 2.00, Σs = 0.125, ΣA = 1.025, ΣF = 0.85, ν = 2.4
– Reflector: ΣT = 0.25, Σs = 0.24, ΣA = 0.01

x-2 2-1.75 1.75

Continuously Varying Materials & Tallies AMC-13 - 36LA-UR-18-20247

Varying Density - Problem B

Continuously Varying Materials & Tallies AMC-13 - 37LA-UR-18-20247

Continuous Tallies - Problem B

Continuously Varying Materials & Tallies AMC-13 - 38LA-UR-18-20247

Continuous Materials & Tallies

• Timings for Problem B
Continuous (3 cells) 102 sec
4-step (12 cells) 117 sec
8-step (24 cells) 130 sec
32-step (96 cells) 283 sec

Continuous tallies require more work, but fewer cells.
Can give computational advantage for some problems.

• Conclusions
– It is now practical to extend Monte Carlo codes to use

continuously varying material properties & tallies
– 5th order Legendre polynomials within each cell look promising

Continuously Varying Materials & Tallies AMC-13 - 39LA-UR-18-20247

Continuous 2D Tallies - Reactor Fuel Pin Cell

• For testing the 2-D FET was implemented in MCNP4c.

• Benchmark tests were conducted on a simulated PWR fuel pin to
calculate the spatial distribution of thermal flux in the x-y plane.

• The FET results were compared with results from an MCNP5 mesh
tally calculation.

– Fuel OD: 1.206 cm
– Pitch: 1.875 cm
– Clad Thickness: 0.06 cm
– Gap Thickness: 0.008 cm
– Fuel Enrichment: 1%
– Eigenvalue: 1.026

1.5% UO 2

1.875 cm

1.206 cm

Figure 1. Simulated PWR fuel pin model
used for benchmark testing of the Legendre
functional expansion tally (FET) implemented
in MCNP4c.

1.5% UO 2

1.875 cm

1.206 cm

1.5% UO 2

1.875 cm

1.206 cm

Figure 1. Simulated PWR fuel pin model
used for benchmark testing of the Legendre
functional expansion tally (FET) implemented
in MCNP4c.

Continuously Varying Materials & Tallies AMC-13 - 40LA-UR-18-20247

Continuous 2D Tallies - Reactor Fuel Pin Cell

DP Griesheimer & WR Martin, "Two Dimensional Functional Expansion Tallies for Monte
Carlo Simulations," PHYSOR-2004, Chicago, IL (2004)

Continuously Varying Materials & Tallies AMC-13 - 41LA-UR-18-20247

Continuous 2D Tallies - 1/4 Fuel Assembly

• In order to test the method on a more realistic problem a PWR-
type quarter assembly was modeled.

• For testing the 2-D FET was implemented in MCNP4c.

• A separate 2-D Legendre expansion was used for each individual
pin-cell.

– ¼ of a 16×16 fuel assembly
– 58 fuel pins, 4 control rods, 2

burnable poison pins
– Pitch: 1.26
– Fuel Enrichment: 2%
– Burnable Poison Density: 0.30 g/cc
– Eigenvalue: 1.1709

Continuously Varying Materials & Tallies AMC-13 - 42LA-UR-18-20247

Continuous 2D Tallies - 1/4 Fuel Assembly
• Control rods withdrawn

Continuously Varying Materials & Tallies AMC-13 - 43LA-UR-18-20247

Continuous 2D Tallies - 1/4 Fuel Assembly
• Control rods inserted

Continuously Varying Materials & Tallies AMC-13 - 44LA-UR-18-20247

Conclusions

• It is now practical to extend Monte Carlo codes to use
continuously varying material properties & tallies

– Continuous materials can be modeled with delta-tracking or direct
numerical tracking

– Flux expansion tallies have many benefits over traditional histogram
tallies
• Can obtain a functional form for the tally distribution directly from the

Monte Carlo, with no post-processing or curve fitting required.
• Can provide a more accurate approximation than a histogram tally,

without requiring significantly more work per history.
• FET estimators are easy to implement in existing Monte Carlo codes

• Future work:
– Practical implementation in production Monte Carlo codes
• See Griesheimer & Martin PHYSOR-2004 paper for 2D extension
• Will be added to MCNP5 mesh tallies in near future

– Investigate methods for reactor depletion

Continuously Varying Materials & Tallies AMC-13 - 45LA-UR-18-20247

References - Continuous Materials & Tallies

• FB Brown, D Griesheimer, & WR Martin, "Continuously Varying Material Properties and Tallies for Monte Carlo
Calculations", PHYSOR-2004, Chicago, IL (April, 2004)

• FB Brown & WR Martin, "Direct Sampling of Monte Carlo Flight Paths in Media with Continuously Varying
Cross-sections", ANS Mathematics & Computation Topical Meeting, Gatlinburg, TN (April, 2003).

• W.R. Martin and F.B. Brown, "Comparison of Monte Carlo Methods for Nonlinear Radiation Transport," Proc.
ANS Mathematics and Computations Topical Meeting, Salt Lake City (Sept 2001)

• DP Griesheimer & WR Martin, "Estimating the Global Scalar Flux Distribution with Orthogonal Basis Function
Expansions", Trans. Am. Nucl. Soc. 89 (Nov, 2003)

• DP Griesheimer & WR Martin, "Two Dimensional Functional Expansion Tallies for Monte Carlo Simulations,"
PHYSOR-2004, Chicago, IL (April, 2004)

• ER Woodcock, T Murphy, PJ Hemmings, TC Longworth, “Techniques Used in the GEM Code for Monte Carlo
Neutronics Calculations in Reactors and Other Systems of Complex Geometry,” Proc. Conf. Applications of
Computing Methods to Reactor Problems, ANL-7050, p. 557, Argonne National Laboratory (1965).

• LL Carter, ED Cashwell, & WM Taylor, “Monte Carlo Sampling with Continuously Varying Cross Sections
Along Flight Paths”, Nucl. Sci. Eng. 48, 403-411 (1972).

• J. Spanier, “Monte Carlo Methods for Flux Expansion Solutions of Transport Problems,” Nucl. Sci. Eng., 133,
73 (1999).

• CJ Everett, ED Cashwell, RG Schrandt, "A Monte Carlo Transport Routine for the ‘US Standard Atmosphere’
(1962) to an Altitude of 90 Kilometers," LA-5089-MS, Los Alamos National Laboratory (1972).

• G.E. Thomas and K. Stamnes, Radiative Transfer in the Atmosphere and Oceans, p. 429, Cambridge University
Press (1999)

• H.D. Rees, Phys. Lett. A 26, 416 (1968), also J. Phys. Chem. Solids 30, 643 (1969).
• M.M.R. Williams, Random Processes in Nuclear Reactors, Pergamon Press (1974).
• S.N. Cramer, "Application of the Fictitious Scattering Radiation Transport Model for Deep-Penetration Monte

Carlo Calculations," ORNL/TM-4880, Oak Ridge National Laboratory (1977).
• W.A. Coleman, "Mathematical Verification of a Certain Monte Carlo Sampling Technique and Applications of

the Technique to Radiation Transport Problems," Nucl. Sci. Eng. 32, 76-81 (1968).

Continuously Varying Materials & Tallies AMC-13 - 46LA-UR-18-20247

Continuously Varying Materials & Tallies AMC-13 - 47LA-UR-18-20247

Continuously Varying Materials & Tallies AMC-13 - 48LA-UR-18-20247

Random Number Generators & Testing AMC-20 - 1 LA-UR-18-20247

Forrest B. Brown

National Laboratory Professor, UNM-NE
Senior R&D Scientist, Monte Carlo, LANL

Random Number Generators
for Particle Transport MC
&
RNG Testing

Advanced
Computational

Methods for
Monte Carlo
Calculations

Random Number Generators & Testing AMC-20 - 2 LA-UR-18-20247

Outline

•  Random Number Generators for Particle Transport MC

•  Random Number Generator Testing

Random Number Generators & Testing AMC-20 - 3 LA-UR-18-20247

Introduction

The key to Monte Carlo methods is the notion of random sampling.

•  The problem can be stated this way:
 Given a probability density, f(x), produce a sequence of 's.
 The 's should be distributed in the same manner as f(x).

•  Random sampling distinguishes Monte Carlo from other methods

•  When Monte Carlo is used to solve the Boltzmann transport equation:

–  Random sampling models the outcome of physical events
 (e.g., neutron collisions, fission process, sources, …..)

x̂
x̂

Random Number Generators & Testing AMC-20 - 4 LA-UR-18-20247

Monte Carlo & Random Sampling

Categories of random sampling

•  Random number generator ➜ uniform PDF on (0,1)
•  Sampling from analytic PDFs ➜ normal, exponential, Maxwellian, …
•  Sampling from tabulated PDFs ➜ angular PDFs, spectrum, …

For Monte Carlo codes…

•  Random numbers, ξ, are produced by the RN generator on (0,1)
•  Non-uniform random variates are produced from the ξ’s by:

–  Direct inversion
–  Rejection methods
–  Transformations
–  Composition (mixtures)
–  Sums, products, ratios, …
–  Table lookup + interpolation
–  Lots (!) of other tricks

•  Typically < 5 - 10% of total CPU time

Random Number Generators & Testing AMC-20 - 5 LA-UR-18-20247

Random Number Generators
For Particle Transport MC

Random Number Generators & Testing AMC-20 - 6 LA-UR-18-20247

Random Number Generators

 "Randomness is a negative property; it is the absence of any pattern."
 Richard W. Hamming, 1991

•  Numbers are not random; a sequence of numbers can be.

•  Truly random sequences are generally not desired on a computer.

•  RNG
–  Function which generates a sequence of numbers which appear to

have been randomly sampled from a uniform distribution on (0,1)

–  Repeatable (deterministic)
–  Pass statistical tests for randomness

–  Typical usage in codes: r = rang()
–  Also called "pseudo-random number generators"

•  All other random sampling is performed using this basic RNG
•  Note that the probability of something occurring also varies in (0,1)

between 0 & 1 …..

Random Number Generators & Testing AMC-20 - 7 LA-UR-18-20247

RNGs – Some Comments

From “An Essay on Random Number Generators for Monte Carlo Codes”, F. Brown:

Numbers are not random, they are just numbers.

An algorithm for producing "random numbers" is not random, it is a fully prescribed sequence of operations to be
performed.

When we talk about "random numbers" on a computer, what we really mean is "a sequence of numbers that appears
to be uniformly distributed". Similarly, a "random number generator" is an algorithm for producing a sequence of
numbers that appears to be uniformly distributed.

We can't determine whether a single number was produced "randomly". We can, however, subject a sequence (or
stream) of numbers to a set of statistical tests. We then compare the outcome of these tests to the known theoretical
results that would be produced if a truly random, uniformly distributed sequence of numbers was subjected to the
same tests. If our algorithm-produced sequence yields the same results as a theoretical truly random sequence for all
of the tests, we declare that our algorithm-produced sequence is "random". What we mean is that the algorithm-
produced sequence is indistinguishable from a truly random sequence.

In considering a random number generator for Monte Carlo codes, we are fully aware that algorithm-produced
sequences are deterministic, not truly random. However, if a sequence of algorithm-produced random numbers is
indistinguishable from a truly random sequence, then we may confidently use it in Monte Carlo simulations.

An important theme of the preceding discussion is that we cannot prove that a sequence is random, nor that a given
random number generator produces a random sequence. All we can do is subject the algorithm-produced sequences
to a set of statistical tests and compare to theoretical results for truly random sequences. If an algorithm-produced
sequence fails any of the tests, then we can declare that the random number generator is bad. Hence, given a
comprehensive set of statistical tests, we can identify bad generators, but cannot prove that a generator is good.

Random Number Generators & Testing AMC-20 - 8 LA-UR-18-20247

RNGs for Particle Transport MC – Needed Properties

•  Quality - depends on what it is to be used for:
–  Cryptography

•  Every bit in every integer in a sequence must be random & unpredictable
–  Particle transport

•  We convert a random sequence of integers into a sequence of floating-point (real) numbers. Not
concerned about the last few least-significant bits

•  Reproducibility
–  For any combination of the number of processors, MPI tasks, threads, or spatial

domains (for domain decomposition):
•  Want same results (ie, RN usage for each particle)
•  The order in which particles are processed should not affect results
•  Every particle created must be given a unique RN seed

•  Skip-Ahead
–  For parallel calculations, must be a fast way to skip-ahead in the RN sequence

•  State
–  The RNG state-space or storage per particle must be small

•  Robust
–  Must never, ever fail !!!

Random Number Generators & Testing AMC-20 - 9 LA-UR-18-20247

Linear Congruential RNGs (LCGs)

Most production-level Monte Carlo codes for particle transport use
linear congruential random number generators (LCGs):

 Si+1 = Si • g + c mod 2m

 Si = seed, g = multiplier, c = adder, 2m = modulus

•  Simple, fast, robust, over 60 years of heavy-duty use

•  Theory is well-understood (e.g., DE Knuth, Vol. 2, 177 pages)

•  Not the "best" RNGs, but good enough - RN's are used in
unpredictable ways during particle simulation

•  To achieve reproducibility for vector or parallel calculation, there
must be a fast, direct method for skipping ahead (or back) in the
random sequence

Random Number Generators & Testing AMC-20 - 10 LA-UR-18-20247

Simple LCG - Example #1

Sk+1 = [g·Sk + C] mod p, with g=47, C=1, S0=1, P=100

Sk+1 = [47·Sk + 1] mod 100

 s(0) = 1
 s(1) = (47x1 + 1) mod 100 = 48 mod 100 = 48
 s(2) = (47x48 + 1) mod 100 = 2257 mod 100 = 57
 s(3) = (47x57 + 1) mod 100 = 2680 mod 100 = 80
 s(4) = (47x80 + 1) mod 100 = 3761 mod 100 = 61
 s(5) = (47x61 + 1) mod 100 = 2868 mod 100 = 68
 s(6) = (47x68 + 1) mod 100 = 3197 mod 100 = 97
 s(7) = (47x97 + 1) mod 100 = 4560 mod 100 = 60
 s(8) = (47x60 + 1) mod 100 = 2821 mod 100 = 21
 s(9) = (47x21 + 1) mod 100 = 988 mod 100 = 88
 s(10) = (47x88 + 1) mod 100 = 4137 mod 100 = 37
 s(ll) = (47x37 + 1) mod 100 = 1740 mod 100 = 40
 s(12) = (47x40 + 1) mod 100 = 1881 mod 100 = 81
 s(13) = (47x81 + 1) mod 100 = 3808 mod 100 = 8
 s(14) = (47x8 + 1) mod 100 = 377 mod 100 = 77
 s(15) = (47x77 + 1) mod 100 = 3620 mod 100 = 20
 s(16) = (47x20 + 1) mod 100 = 941 mod 100 = 41
 s(17) = (47x41 + 1) mod 100 = 1928 mod 100 = 28
 s(18) = (47x28 + 1) mod 100 = 1317 mod 100 = 17
 s(19) = (47x17 + 1) mod 100 = 800 mod 100 = 0
 s(20) = (47x0 + 1) mod 100 = 1 mod 100 = 1
 s(21) = (47x1 + 1) mod 100 = 48 mod 100 = 48
 s(22) = (47x48 + 1) mod 100 = 2257 mod 100 = 57

Random Number Generators & Testing AMC-20 - 11 LA-UR-18-20247

Simple LCGs - Examples #2 & #3

Example #2: Sk+1 = [5·Sk + 1] mod 100,

 s(0) = 1
 s(1) = (5x1 + 1) mod 100 = 6 mod 100 = 6
 s(2) = (5x6 + 1) mod 100 = 31 mod 100 = 31
 s(3) = (5x31 + 1) mod 100 = 156 mod 100 = 56
 s(4) = (5x56 + 1) mod 100 = 281 mod 100 = 81
 s(5) = (5x81 + 1) mod 100 = 406 mod 100 = 6
 s(6) = (5x6 + 1) mod 100 = 31 mod 100 = 31
 etc.

Example #3: Sk+1 = [5·Sk + 0] mod 100,

 s(0) = 1
 s(1) = (5x1) mod 100 = 5 mod 100 = 5
 s(2) = (5x5) mod 100 = 25 mod 100 = 25
 s(3} = (5x25) mod 100 = 125 mod 100 = 25
 s(4) = (5x25) mod 100 = 125 mod 100 = 25
 etc.

Random Number Generators & Testing AMC-20 - 12 LA-UR-18-20247

Choosing Parameters for LCGs

See Knuth, Vol 2

Random Number Generators & Testing AMC-20 - 13 LA-UR-18-20247

RNG Example (very old)

Random Number Generators & Testing AMC-20 - 14 LA-UR-18-20247

LCGs – Last Few Bits

Random Number Generators & Testing AMC-20 - 15 LA-UR-18-20247

Typical Linear Congruential RNGs

•  Multiplicative congruential method - Lehmer

 Sk = g·Sk-1 + c mod 2m, 0 < Sk < 2m, integer

 ξk = Sk / 2m, 0 ≤ ξk < 1, real

•  Typical parameters
 2m Period g c

RACER (KAPL) 247 245 84,000,335,758,957 0
RCP (BAPL) 248 248 29+1 59,482,192,516,946
MORSE (ORNL) 247 245 515 0
MCNP (LANL) 248 246 519 0
VIM (ANL) 248 246 519 0
RANF (CRAY) 248 246 44,485,709,377,909 0
G. Marsaglia 232 232 69069 1
MCNP5 (LANL) 263 263 (7 options) 1 or 0
MCNP6 (LANL) 263 263 (7 options) 1 or 0

Random Number Generators & Testing AMC-20 - 16 LA-UR-18-20247

MCNP5 & MCNP6 RNG

 Sn+1 = g Sn + c mod 2m

–  See Knuth for rules for selecting g,c,m so that period is maximized &
correlation minimized

–  7 different LCGs are available -- chosen based on the spectral test, Knuth's
tests, & Marsaglia's DIEHARD tests

–  LCG(g, c, m):

•  Traditional MCNP, period = 246 ≈ 7x1013
#1 - LCG(519, 0, 48)

•  L'Ecuyer 63-bit Mixed LCGs, period = 263 ≈ 9x1018
#2 - LCG(9219741426499971445, 1, 63)
#3 - LCG(2806196910506780709, 1, 63)
#4 - LCG(3249286849523012805, 1, 63)

•  L'Ecuyer 63-bit Multiplicative LCGs, period = 261 ≈ 2x1018
#5 - LCG(3512401965023503517, 0, 63)
#6 - LCG(2444805353187672469, 0, 63)
#7 - LCG(1987591058829310733, 0, 63)

 [L’Ecuyer, Math. Comp., 68, 249-260 (1999)]

Random Number Generators & Testing AMC-20 - 17 LA-UR-18-20247

Using RNGs in Particle Transport MC Codes

•  Naïve use, in many older codes & student codes

–  Problem: Can't start Particle-2 until Particle-1 is finished, etc.
 Can't do parallel processing of different particles

•  MCNP, VIM, RACER, MC21, & many other production codes
–  Partition RN sequence into equal-length subsequences, one for each

particle

–  Can process all particles in parallel
–  Length of each subsequence is called the stride
–  Must have a fast way to skip-ahead in the RN sequence

•••
RNs for

particle 1
RNs for

particle 2
RNs for

particle 3

••
RNs for

particle 1
RNs for

particle 2
RNs for

particle 3

Random Number Generators & Testing AMC-20 - 18 LA-UR-18-20247

•  Histories vs particles
–  With splitting &/or secondary particle creation,

the number of particles in a given history is
not known in advance

–  Need to partition RN sequence by history,
not by particle

–  With this scheme, can process histories in parallel,
but not particles in same history

–  Must have a predictable scheme for banking/unbanking particles in a
given history (e.g., LIFO)

Using RNGs in Particle Transport MC Codes

Source Random
Walk

Random
Walk

Random
Walk

��

RNs for
history 1

RNs for
history 2

RNs for
history 3

Random Number Generators & Testing AMC-20 - 19 LA-UR-18-20247

Reproducibility

Random Number Generators & Testing AMC-20 - 20 LA-UR-18-20247

Reproducibility & Parallel Calculation

Random Number Generators & Testing AMC-20 - 21 LA-UR-18-20247

RNG Coding – Some Details

•  Real arithmetic
–  IEEE Standard for Floating Point Arithmetic (IEE-754-2008)
–  32-bit reals

•  24 bits of precision, ~7 decimal digits, max exponent ~38
•  Never use for general engineering/scientific calculations

–  64-bit reals
•  53 bits of precision, ~16 decimal digits, max exponent ~308

–  Arithmetic
•  Least-significant bits discarded
•  For mixed ops, such as a*x+b, intermediate results may retain more bits

•  Integer arithmetic
–  32-bit integers – Fortran integer, C++ int
–  64-bit integers – Fortran integer(8), C++ long or ‘long long’
–  C++ allows unsigned integers, Fortran does not
–  If overflow in arithmetic, least significant bits are retained

–  For (long a)*(long b), rightmost 64-bits are kept
–  Bits in an integer are conventionally numbered right-to-left

63 62 61 ... 3 2 1 0

Random Number Generators & Testing AMC-20 - 22 LA-UR-18-20247

RNG Coding – Some Details

•  RNGs generate integer sequences

–  Integers converted to reals (fractions) for use in MC codes

–  By convention, RNGs should not return exactly 0.0 or 1.0,
 0.0 < rang() < 1.0

•  It should be safe to do this: log(rang())
•  Or this: 1. / rang()
•  This should return an integer in [0,N-1]: floor(N*rang())

–  Mixed LCGs include 0 in the integer sequence
•  Must return smallest positive real number if that occurs

•  Why use 63-bit RNGs, instead of 64-bit ?

–  In Fortran, all integers are signed – there are no unsigned types
•  Largest positive integer is 263 – 1, 63 bits
•  Could of course use tricks to get around this limitation, but then portability

to different compilers becomes a serious issue

–  Prefer to use an RNG that can be written in either Fortran or C++

Random Number Generators & Testing AMC-20 - 23 LA-UR-18-20247

RNG Coding – Some Details

•  Multiplying & adding 63-bit integers

–  Below, RN_MASK is a 64-bit integer, 0 followed by 63 1s: 0111...111

–  C++ using 'unsigned long'

 RN_SEED = (RN_MULT * RN_SEED + RN_ADD) & RN_MASK ;

–  Fortran, using 8-byte integers (signed)

 RN_SEED = iand(RN_MULT * RN_SEED, RN_MASK)
 RN_SEED = iand(RN_SEED + RN_ADD, RN_MASK)

 Need to mask-off sign bit after each op

multiply 2 ULs,
retain least-significant

64-bits

Boolean AND with mask,
retain only 63-bits

OK to add &
retain 64-bits

Random Number Generators & Testing AMC-20 - 24 LA-UR-18-20247

RNG Coding – Some Details

•  How do you convert a 63-bit integer to a real with 53-bit precision?

–  Naive implementation

 RN_MULT = pow(2.0, -63) ;
 rang = RN_SEED * RN_MULT ;

–  Problem:
•  RN_SEED is in range [0, 263-1]
•  For the highest 512 integers in the range, the above approach

results in rang==1.0. [ie, roundoff due to finite precision to exactly 1.0]

–  Correct approach:

 RN_MULT = pow(2.0, -53) ;
 i53 = RN_SEED >> 10 // shift right 10 bits, to get 53-bits
 if(! i53) i53++; // guard against 0
 rang = i53 * RN_MULT ; // exact conversion to real

Random Number Generators & Testing AMC-20 - 25 LA-UR-18-20247

RNG Coding – Some Details

•  MCNP RNG (#2, 63-bit, simplified)

unsigned long RN_SEED, I53;

// multiplier & adder
unsigned long RN_MULT = 9219741426499971445UL;
unsigned long RN_ADD = 1UL;
// mask to retain bits 0-62, 0 for bit 63
unsigned long RN_MASK = (1UL<<63) – 1UL;
// shift right 10 bits, retain most significant 53 bits
int RN_SHIFT = 10;
// multiplier to convert 53-bit int to double, 2.0**(-53)
double RN_NORM = 1.0 / (double) (1UL<<53);

// new 63-bit integer seed
RN_SEED = (RN_MULT * RN_SEED + RN_ADD) & RN_MASK;
// convert to double, 53-bit precision
I53 = RN_SEED >> RN_SHIFT;
if(! I53) I53++; // guards against 0
return (double) (I53 * RN_NORM);

Note: bits are conventionally
 numbered right-to-left,
 bit-0 = rightmost,
 bit-63 = leftmost

Random Number Generators & Testing AMC-20 - 26 LA-UR-18-20247

Skip-ahead for LCGs

•  To skip ahead k steps in the RN sequence:

 Sk = g Sk-1 + c mod 2m

 = gk S0 + c (gk-1)/(g-1) mod 2m

•  Negative skip k equivalent to positive skip [period-k]

•  Can skip from any seed to any other

–  Initial seed à ith seed for jth particle on mth processor in kth generation
–  Particle i à particle j
–  Batch i à batch j

•  Need a fast way to compute gkmod2m & c(gk-1)/(g-1) mod2m in
O(m) steps, rather than O(k) steps

Reference: F.B. Brown, “Random Number Generation with Arbitrary Strides”,
 Trans. Am. Nucl. Soc. (Dec 1994)

Random Number Generators & Testing AMC-20 - 27 LA-UR-18-20247

Random Number Generators - Skip Ahead

Random Number Generators & Testing AMC-20 - 28 LA-UR-18-20247

Random Number Generators - Skip Ahead

Random Number Generators & Testing AMC-20 - 29 LA-UR-18-20247

Random Number Generators - Skip Ahead

Random Number Generators & Testing AMC-20 - 30 LA-UR-18-20247

Random Number Generators - Skip Ahead

Random Number Generators & Testing AMC-20 - 31 LA-UR-18-20247

Random Number Generators - Skip Ahead - Example

Random Number Generators & Testing AMC-20 - 32 LA-UR-18-20247

Random Number Generators - Skip Ahead - Example

Random Number Generators & Testing AMC-20 - 33 LA-UR-18-20247

Random Number Generators - Skip Ahead

MCNP5 --- LANL --- all machines

Random Number Generators & Testing AMC-20 - 34 LA-UR-18-20247

Forrest B. Brown

National Laboratory Professor, UNM-NE
Senior R&D Scientist, Monte Carlo, LANL

Random Number Generator
Testing

Advanced
Computational

Methods for
Monte Carlo
Calculations

Random Number Generators & Testing AMC-20 - 35 LA-UR-18-20247

Random Number Generation & Testing

•  Knuth statistical tests

•  Marsaglia's DIEHARD test suite

•  Spectral test

•  Performance test

•  Results

F.B. Brown & Y. Nagaya, “The MCNP5 Random Number Generator”,
 Trans. Am. Nucl. Soc. [also, LA-UR-02-3782] (November, 2002)

Y. Nagaya & F.B. Brown, "Testing MCNP Random Number Generators",
 LANL report on testing MCNP5 RN generators,
 work performed in 2002 for original MCNP5 version, LA-UR-11-04858 (2011)

Random Number Generators & Testing AMC-20 - 36 LA-UR-18-20247

MCNP5 RNG: History

•  MCNP & related precursor codes
–  40+ years of intense use
–  Many different computers & compilers
–  Modern versions are parallel: MPI + threads
–  History based: Consecutive RNs used for primary particle,

 then for each of it’s secondaries in turn, etc.
–  RN generator is small fraction of total computing time (~ 5%)

•  Traditional MCNP RN Algorithm
–  Linear congruential, multiplicative

 Sn+1 = g Sn mod 248, g = 519

–  48-bit integer arithmetic, carried out in 24-bit pieces
–  Stride for new histories: 152,917
–  Skip-ahead: crude, brute-force
–  Period / stride = 460 x 106 histories
–  Similar RN generators in RACER, RCP, MORSE, KENO, VIM

Random Number Generators & Testing AMC-20 - 37 LA-UR-18-20247

MCNP5 RNG: Requirements

•  Algorithm
–  Robust, well-proven
–  Long period: > 109 particles x stride 152,917 = 1014 RNs
–  >109 parallel streams
–  High-precision is not needed, low-order bits not important
–  Must have fast skip-ahead procedure
–  Reasonable theoretical basis, no correlation within or between

histories

•  Coding
–  Robust !!!! Must never fail.
–  Rapid initialization for each history
–  Minimal amount of state information
–  Fast, but portable – must be exactly reproducible on any computer/

compiler

Random Number Generators & Testing AMC-20 - 38 LA-UR-18-20247

MCNP5 RNG: Algorithm

•  Linear congruential generator (LCG)

 Sn+1 = g Sn + c mod 2m,

Period = 2m (for c>0) or 2m-2 (for c=0)

Traditional MCNP: m=48, c=0 Period=1014, 48-bit integers
MCNP5: m=63, c=1 Period=1019, 63-bit integers

How to pick g and c ???

•  RN Sequence & Particle Histories
 ••••••••••••••• ••••••••••••••• •••••••••••••••

 1 2 3 etc.

–  Stride for new history: 152,917

Random Number Generators & Testing AMC-20 - 39 LA-UR-18-20247

MCNP5 RNG: Coding

•  RN Generation in MCNP-5

–  RN module, entirely replaces all previous coding for RN generation

–  Fortran-90, using INTEGER(I8) internally,
where I8=selected_int_kind(18)

–  All parameters, variables, & RN generator state are PRIVATE,
accessible only via “accessor” routines

–  Includes “new” skip-ahead algorithm for fast initialization of histories,
greatly simplifies RN generation for parallel calculations

–  Portable, standard, thread-safe

–  Built-in unit test, compile check, and run-time test

–  Developed on PC, tested on SGI, IBM, Sun, Compaq, Mac, alpha

Random Number Generators & Testing AMC-20 - 40 LA-UR-18-20247

Extended generators : 63-bit LCGs

•  Selection of multiplier, increment and modulus
Sn+1 = 519 Sn + 0 mod 248 (MCNP4)

•  Multiplicative LCG(g, 0, 2b)
 g ±3 mod 8, S0 = odd Period : 2b-2

•  Mixed LCG(g, c, 2b)
 g 1 mod 4, c = odd Period : 2b

•  MCNP5 - Extension of multiplier
–  519 = 45-bit integer in the binary representation
–  519 seems to be slightly small in 63-bit environment.
–  Odd powers of 5 satisfy both conditions above.
–  Try these: (519,0,263), (523,0,263), (525,0,263),

 (519,1,263), (523,1,263), (525,1,263)

523, 525 1 263

Random Number Generators & Testing AMC-20 - 41 LA-UR-18-20247

L’Ecuyer’s 63-bit LCGs

•  L’Ecuyer suggested 63-bit LCGs with good lattice structures.
 Math. Comp., 68, 249-260 (1999)

–  Good multipliers were chosen based on the spectral test.

–  Multiplicative LCGs
•  LCG(3512401965023503517, 0, 263)
•  LCG(2444805353187672469, 0, 263)
•  LCG(1987591058829310733, 0, 263)

–  Mixed LCGs
•  LCG(9219741426499971445, 1, 263)
•  LCG(2806196910506780709, 1, 263)
•  LCG(3249286849523012805, 1, 263)

Random Number Generators & Testing AMC-20 - 42 LA-UR-18-20247

Tests for RNGs

•  13 different LCGs were tested:
–  Traditional MCNP RNG, (519, 0, 248)
–  6 - Extended 63-bit LCGs
–  6 - L’Ecuyer’s 63-bit LCGs

•  Theoretical tests :
–  Analyze the RNG algorithm of based on number theory and the theory

of statistics.
–  Theoretical tests depend on the type of RNG. (LCG, Shift register,

Lagged Fibonacci, etc.)
–  For LCGs, the Spectral test is used

•  Empirical tests :
–  Analyze the uniformity, patterns, etc. of RNs generated by RNGs.
–  Standard tests - reviewed by D. Knuth, SPRNG test routines
–  DIEHARD tests - Bit level tests by G. Marsaglia, more stringent
–  Physical tests - RNGs are used in a practical application. The exact

solutions for the tests are known. (not performed in this work)

Random Number Generators & Testing AMC-20 - 43 LA-UR-18-20247

Spectral test

•  LCGs have regular patterns (lattice structures) when overlapping
t-tuples of a random number sequence are plotted in a hypercube.
(Marsaglia, 1968).

•  all the t-tuples are covered with families of parallel (t-1)-
dimensional hyperplanes.

•  The spectral test determines the maximum distance between
adjacent parallel hyperplanes.

Random Number Generators & Testing AMC-20 - 44 LA-UR-18-20247

Illustration of the spectral test

•  Example: Sn+1 = 137 Sn + 187 mod 256

 0.26562, 0.12109, 0.32031, 0.61328, 0.75000, …
 pair pair

pair pair

Random Number Generators & Testing AMC-20 - 45 LA-UR-18-20247

Measures for Spectral Test Criterion & Ranking

•  µ value proposed by Knuth
–  Represent the effectiveness of a multiplier.

 Knuth’s criterion

•  S value
–  Normalized maximum distance.

–  The closer to 1 the S value is, the better the RNG is.

μt(m,g) for 2 ≤ t ≤ 6 Result

 μt(m,g) > 1 Pass with flying colors

0.1 ≤ μt(m,g) ≤ 1 Pass

μt(m,g) ≤ 0.1 Fail

St =

dt
∗(m)

dt (m,g)

Maximum distance between adjacent  
 parallel hyperplanes.

Lower bound on .

Random Number Generators & Testing AMC-20 - 46 LA-UR-18-20247

Spectral test for extended LCGs
Dimension(t) 2 3 4 5 6 7 8

 LCG(519,0,263)
µt(m,g) 1.7321 2.1068 2.7781 1.4379 0.0825 2.0043 5.9276
St(m,g) 0.6910 0.7085 0.7284 0.6266 0.3888 0.6573 0.7414

 LCG(523,0,263)
µt(m,g) 0.0028 1.9145 2.4655 5.4858 0.3327 0.2895 6.6286
St(m,g) 0.0280 0.6863 0.7070 0.8190 0.4906 0.4986 0.7518

 LCG(525,0,263)
µt(m,g) 0.3206 1.8083 0.0450 3.0128 0.3270 3.1053 0.4400
St(m,g) 0.2973 0.6733 0.2598 0.7265 0.4892 0.6998 0.5356

 LCG(519,1,263)
µt(m,g) 1.7321 2.9253 2.4193 0.3595 0.0206 0.5011 1.6439
St(m,g) 0.6910 0.7904 0.7036 0.4749 0.3086 0.5392 0.6316

 LCG(523,1,263)
µt(m,g) 0.0007 2.8511 2.5256 3.1271 4.5931 1.8131 4.2919
St(m,g) 0.0140 0.7837 0.7112 0.7319 0.7598 0.6480 0.7121

 LCG(525,1,263)
µt(m,g) 0.0801 3.4624 1.3077 1.0853 1.4452 0.7763 1.3524
St(m,g) 0.1486 0.8361 0.6033 0.5923 0.6266 0.5740 0.6163

Random Number Generators & Testing AMC-20 - 47 LA-UR-18-20247

Spectral test for L’Ecuyer’s 63-bit LCGs
Dimension(t) 2 3 4 5 6 7 8

 LCG(3512401965023503517,0,263)
µt(m,g) 2.9062 2.9016 3.1105 4.0325 5.3992 6.7498 7.2874
St(m,g) 0.8951 0.7883 0.7493 0.7701 0.7806 0.7818 0.7608

 LCG(2444805353187672469,0,263)
µt(m,g) 2.2588 2.4430 6.4021 2.9364 3.0414 5.4274 4.6180
St(m,g) 0.7891 0.7443 0.8974 0.7228 0.7094 0.7579 0.7186

 LCG(1987591058829310733,0,263)
µt(m,g) 2.4898 3.4724 1.7071 2.5687 2.1243 2.0222 4.1014
St(m,g) 0.8285 0.8369 0.6449 0.7037 0.6682 0.6582 0.7080

 LCG(9219741426499971445,1,263)
µt(m,g) 2.8509 2.8046 3.5726 3.8380 3.8295 6.4241 6.8114
St(m,g) 0.8865 0.7794 0.7757 0.7625 0.7371 0.7763 0.7544

 LCG(2806196910506780709,1,263)
µt(m,g) 1.9599 4.0204 4.4591 3.1152 3.0728 3.0111 3.7947
St(m,g) 0.7350 0.8788 0.8199 0.7314 0.7106 0.6967 0.7012

 LCG(3249286849523012805,1,263)
µt(m,g) 2.4594 2.4281 3.7081 2.8333 3.7633 3.0844 1.9471
St(m,g) 0.8234 0.7428 0.7829 0.7176 0.7350 0.6991 0.6451

Random Number Generators & Testing AMC-20 - 48 LA-UR-18-20247

Results of spectral test

•  Results for the traditional MCNP RNG

•  All extended 63-bit LCGs fail with Knuth’s criterion.
•  All L’Ecuyer’s 63-bit LCGs pass with flying colors.
•  Comparison of minimum S values

Dimension(t) 2 3 4 5 6 7 8
µt(m,g) 3.0233 0.1970 1.8870 0.9483 1.8597 0.8802 1.2931

St(m,g) 0.9129 0.3216 0.6613 0.5765 0.6535 0.5844 0.6129

RNG Minimum St(m,g)

LCG(519,0,248) 0.3216
LCG(3512401965023503517,0,263) 0.7493
LCG(2444805353187672469,0,263) 0.7094
LCG(1987591058829310733,0,263) 0.6449
LCG(9219741426499971445,1,263) 0.7371
LCG(2806196910506780709,1,263) 0.6967
LCG(3249286849523012805,1,263) 0.6451

Random Number Generators & Testing AMC-20 - 49 LA-UR-18-20247

Standard test suite in SPRNG

•  SPRNG (Scalable Parallel Random Number Generators)
–  Test programs are available. http://sprng.cs.fsu.edu

•  Standard test suite (Knuth)
–  Equidistribution
–  Serial
–  Gap
–  Poker
–  Coupon collector’s
–  Permutation
–  Runs-up
–  Maximum-of-t
–  Collision tests

•  Choice of test parameters
–  L’Ecuyer’s test suite : Comm. ACM 31 p.742 (1988)
–  Vattulainen’s test suite : Comp. Phys. Comm. 86 p.209 (1995)
–  Mascagni’s test suite : Submitted to Parallel Computing

Random Number Generators & Testing AMC-20 - 50 LA-UR-18-20247

Equidistribution test

•  Check whether RNs are uniformly generated in [0, 1).
•  Generate random integers in [0,d-1].
•  Each integer must have the equal probability 1/d.

 0.10574, 0.66509, 0.46622, 0.93925, 0.26551, 0.11361, …

 0, 5, 3, 7, 2, 0, 2, 3, 1, 4, …

Count frequencies of 0 ~ d-1.
Cumulative chi-square distribution

Random Number Generators & Testing AMC-20 - 51 LA-UR-18-20247

Criterion of “Pass or Failure”

•  All empirical tests score a statistic.
•  A goodness-of-fit test is performed on the test statistic and yield a

p-value. (Chi-square or Kolmogorov-Smirnov test)
•  If the p-value is close to 0 or 1, a RNG is suspected to fail.
•  Significance level : 0.01(1%)
•  Repeat each test 3 times.
•  If all 3 p-values are suspicious, then the RNG fails.

Random Number Generators & Testing AMC-20 - 52 LA-UR-18-20247

DIEHARD test suite

•  DIEHARD test
–  A battery of tests proposed by G. Marsaglia.
–  Test all bits of random integers, not only the most significant bits.
–  More stringent than standard Knuth tests.
–  Default test parameters were used in this work.
–  Test programs are available. http://stat.fsu.edu/~geo/diehard.html

•  Included tests:
–  Birthday spacings
–  Overlapping 5-permutation
–  Binary rank
–  Bitstream
–  Overlapping-pairs-sparse-occupancy (OPSO)
–  Overlapping-quadruples-sparse-occupancy (OQSO)
–  DNA
–  Count-the-1's test on a stream of bytes
–  Count-the-1's test for specific bytes
–  Parking lot
–  Minimum distance
–  3-D spheres
–  Squeeze
–  Overlapping sums
–  Runs
–  Craps

Random Number Generators & Testing AMC-20 - 53 LA-UR-18-20247

Overlapping-pairs-sparse-occupancy test (1)

•  OPSO = Overlapping-Pairs-Sparse-Occupancy test
•  Preparation of 32-bit integers

 0.10574, 0.66509, 0.46622, 0.93925, 0.26551, 0.11361, …

 454158374, 2856527213, 2002411287, 4034027575, …

 11011000100011110100000100110,
 10101010010000110010010101101101, …

•  Letter : a designated string of consecutive 10 bits
 11011000100011110100000100110,
 10101010010000110010010101101101, …

Binary representation

Letter : 210 = 1024 patterns (letters)

Random Number Generators & Testing AMC-20 - 54 LA-UR-18-20247

Overlapping-pairs-sparse-occupancy test (2)

•  2-letter words are formed from an alphabet of 1024 letters.
 0000100110, 0101101101, 1100010111, 0000110111, …

 38, 365, 791, 55, …

•  Count the number of
 missing words (=j).

•  The number of missing

 words should be very closely
 normally distributed with
 mean 141,909,
 standard deviation 290.

Decimal representation

2-letter word 2-letter word

Cumulative normal distribution

Random Number Generators & Testing AMC-20 - 55 LA-UR-18-20247

Overlapping-quadruples-sparse-occupancy test

•  OQSO = Overlapping-Quadraples-Sparse-Occupancy test
•  Similar to the OPSO test.
•  Letter : a designated string of consecutive 5 bits
 11011000100011110100000100110,
 10101010010000110010010101101101, …

•  4-letter words are formed from an alphabet of 32 letters.
 00110, 01101, 10111, 10111, …

•  The number of missing words should be very closely normally

distributed with mean 141909, standard deviation 295.

Letter : 25 = 32 letters

4-letter word

Random Number Generators & Testing AMC-20 - 56 LA-UR-18-20247

DNA test

•  Similar to the OPSO and OQSO tests.
•  Letter : a designated string of consecutive 2 bits
 11011000100011110100000100110,
 10101010010000110010010101101101, …

•  10-letter words are formed from an alphabet of 4 letters.
 10, 1, 11, 11, 11, 1, 10, 0, 11, 10, …

•  The number of missing words should be very closely normally
distributed with mean 141909, standard deviation 399.

Letter : 22 = 4 letters

10-letter word

Random Number Generators & Testing AMC-20 - 57 LA-UR-18-20247

DIEHARD Test Suite

•  Criterion for DIEHARD test

–  If the p-value is close to 0 or 1, a RNG is suspected to fail.

–  Significance level : 0.01(1%)

–  A RNG fails the test if we get six or more p-values less than 0.01 or
more than 0.99.

•  Results for standard & DIEHARD tests

–  All 13 RNGs pass all standard tests with L’Ecuyer’s, Vattulainen’s and
Mascagni’s test parameters.

–  Extended and L’Ecuyer’s 63-bit LCGs pass all the DIEHARD tests.

–  The traditional MCNP RNG fails the OPSO, OQSO and DNA tests in the
DIEHARD test suite.

Random Number Generators & Testing AMC-20 - 58 LA-UR-18-20247

Result of OPSO test for traditional MCNP RNG

Tested bits p-value Tested bits p-value

bits 23 to 32 0.0000 bits 11 to 20 0.7457

bits 22 to 31 0.0000 bits 10 to 19 0.0598

bits 21 to 30 0.0000 bits 9 to 18 0.1122

bits 20 to 29 0.0000 bits 8 to 17 0.4597

bits 19 to 28 0.0001 bits 7 to 16 0.0011

bits 18 to 27 0.6639 bits 6 to 15 0.6319

bits 17 to 26 0.0445 bits 5 to 14 0.7490

bits 16 to 25 0.0125 bits 4 to 13 0.2914

bits 15 to 24 0.7683 bits 3 to 12 0.1792

bits 14 to 23 0.9712 bits 2 to 11 0.3253

bits 13 to 22 0.1077 bits 1 to 10 0.7277

bits 12 to 21 0.0717

Random Number Generators & Testing AMC-20 - 59 LA-UR-18-20247

Result of OQSO test for traditional MCNP RNG

Tested bits p-value Tested bits p-value

bits 28 to 32 1.0000 bits 14 to 18 0.6487

bits 27 to 31 1.0000 bits 13 to 17 0.5575

bits 26 to 30 1.0000 bits 12 to 16 0.1634

bits 25 to 29 1.0000 bits 11 to 15 0.6600

bits 24 to 28 1.0000 bits 10 to 14 0.2096

bits 23 to 27 1.0000 bits 9 to 13 0.3759

bits 22 to 26 0.0000 bits 8 to 12 0.9191

bits 21 to 25 0.0000 bits 7 to 11 0.8554

bits 20 to 24 0.0000 bits 6 to 10 0.5535

bits 19 to 23 0.1906 bits 5 to 9 0.4955

bits 18 to 22 0.0011 bits 4 to 8 0.0868

bits 17 to 21 0.3823 bits 3 to 7 0.1943

bits 16 to 20 0.8394 bits 2 to 6 0.8554

bits 15 to 19 0.2518 bits 1 to 5 0.7421

Random Number Generators & Testing AMC-20 - 60 LA-UR-18-20247

Result of DNA test for traditional MCNP RNG

Tested bits p-value Tested bits p-value Tested bits p-value

bits 31 to 32 1.0000 bits 20 to 21 0.4937 bits 9 to 10 0.4550

bits 30 to 31 1.0000 bits 19 to 20 0.0613 bits 8 to 9 0.4737

bits 29 to 30 1.0000 bits 18 to 19 0.2383 bits 7 to 8 0.7834

bits 28 to 29 1.0000 bits 17 to 18 0.4831 bits 6 to 7 0.4063

bits 27 to 28 1.0000 bits 16 to 17 0.0925 bits 5 to 6 0.8959

bits 26 to 27 0.1777 bits 15 to 16 0.0197 bits 4 to 5 0.3438

bits 25 to 26 0.0000 bits 14 to 15 0.7377 bits 3 to 4 0.3972

bits 24 to 25 0.0000 bits 13 to 14 0.7171 bits 2 to 3 0.8986

bits 23 to 24 0.0000 bits 12 to 13 0.0309 bits 1 to 2 0.5407

bits 22 to 23 0.0000 bits 11 to 12 0.2803

bits 21 to 22 0.0000 bits 10 to 11 0.8440

Random Number Generators & Testing AMC-20 - 61 LA-UR-18-20247

Comments on results for OPSO, OQSO, DNA

•  Less significant (lower) bits of RNs fail the tests.

•  These failures in less significant bits are caused by the shorter
period than the significant bits.

•  However, these failures do not have a significant impact in the
practical use.

The (r+1)-th most significant bit has period length
at most 2-r times that of the most significant bit.

Drawback of LCGs with power-of-two modulus

Random Number Generators & Testing AMC-20 - 62 LA-UR-18-20247

Performance test

•  Test program

 integer(8) :: i
 integer(8), parameter :: NumGeneratedRNs = 1000000000
 !real(8) :: rang ! For MCNP4
 real(8) :: RN_initial, RN_last
 real(8) :: dummy

 !call random ! For MCNP4
 call RN_init_problem(new_standard_gen = 1)

 RN_initial = rang()

 do i = 2, NumGeneratedRNs-1
 dummy = rang()
 end do

 RN_last = rang()

Random Number Generators & Testing AMC-20 - 63 LA-UR-18-20247

Results of performance test

•  Comparison between MCNP4 and MCNP5
•  Generate 1 billion RNs.

Platform : Windows 2000, Intel Pentium III 1GHz
Compiler : Compaq Visual Fortran Ver.6.6

MCNP4 MCNP5 MCNP4/MCNP5
 CPU (sec)
 No optimization
 (/optimization:0)

290.0 97.1 3.0

 CPU (sec)
 Local optimization
 (/optimization:1)

191.7 77.2 2.5

 CPU (sec)
 Full optimization
 (/optimization:4)

188.4 78.1 2.4

Random Number Generators & Testing AMC-20 - 64 LA-UR-18-20247

Summary

•  The traditional MCNP RNG fails the OPSO, OQSO and DNA tests in
the DIEHARD test suite.

•  The 63-bit LCGs extended from the MCNP RNG fail the spectral
test.

•  L'Ecuyer's 63-bit LCGs pass all the tests and their multipliers are
excellent judging from the spectral test.

•  These 63-bit LCGs are implemented in the RNG package for
MCNP5

•  The MCNP5 RNG is ~2.5 times faster than the MCNP4 RNG.

Random Number Generators & Testing AMC-20 - 65 LA-UR-18-20247

Random Sampling -- References

Every Monte Carlo code developer who works with random sampling should own &
read these references:

–  D. E. Knuth, The Art of Computer Programming, Vol. 2: Semi-numerical Algorithms, 3rd
Edition, Addison-Wesley, Reading, MA (1998).

–  L. Devroye, Non-Uniform Random Variate Generation, Springer-Verlag, NY (1986).

–  J. von Neumann, "Various Techniques Used in Conjunction with Random Digits," J. Res.
Nat. Bur. Stand. Appl. Math Series 3, 36-38 (1951).

–  C. J. Everett and E. D. Cashwell, "A Third Monte Carlo Sampler," LA9721-MS, Los Alamos
National Laboratory, Los Alamos, NM (1983).

–  H. Kahn, "Applications of Monte Carlo," AECU-3259, Rand Corporation, Santa Monica, CA
(1954).

–  F.B. Brown, “Random Number Generation with Arbitrary Strides”, Trans. Am. Nucl. Soc.
(Dec 1994)

–  F.B. Brown & Y. Nagaya, “The MCNP5 Random Number Generator”, Trans. Am. Nucl. Soc.
[also, LA-UR-02-3782] (November, 2002)

–  Y. Nagaya & F.B. Brown, "Testing MCNP Random Number Generators", LANL report on
testing MCNP5 RN generators, work performed in 2002 for original MCNP5 version, LA-
UR-11-04858 (2011

Random Number Generators & Testing AMC-20 - 66 LA-UR-18-20247

Random Number Generators & Testing AMC-20 - 67 LA-UR-18-20247

Random Number Generators & Testing AMC-20 - 68 LA-UR-18-20247

Random Sampling – Beyond the Basics AMC-21 - 1 LA-UR-18-20247

Forrest B. Brown

National Laboratory Professor, UNM-NE
Senior R&D Scientist, Monte Carlo, LANL

Random Sampling –
Beyond the Basics

Advanced
Computational

Methods for
Monte Carlo
Calculations

Random Sampling – Beyond the Basics AMC-21 - 2 LA-UR-18-20247

Outline

•  Introduction

•  Random Sampling – Basics

•  Linear Transformations & Scaling

•  Composition Methods

•  Rejection Methods

•  Miscellaneous

Random Sampling – Beyond the Basics AMC-21 - 3 LA-UR-18-20247

Introduction

The key to Monte Carlo methods is the notion of random sampling.

•  The problem can be stated this way:
 Given a probability density, f(x), produce a sequence of 's.
 The 's should be distributed in the same manner as f(x).

•  Random sampling distinguishes Monte Carlo from other methods

•  When Monte Carlo is used to solve the Boltzmann transport equation:

–  Random sampling models the outcome of physical events
 (e.g., neutron collisions, fission process, sources, …..)

x̂
x̂

Random Sampling – Beyond the Basics AMC-21 - 4 LA-UR-18-20247

Monte Carlo & Random Sampling

Categories of random sampling

•  Random number generator ➜ uniform PDF on (0,1)
•  Sampling from analytic PDFs ➜ normal, exponential, Maxwellian, …
•  Sampling from tabulated PDFs ➜ angular PDFs, spectrum, …

For Monte Carlo codes…

•  Random numbers, ξ, are produced by the RN generator on (0,1)
•  Non-uniform random variates are produced from the ξ’s by:

–  Direct inversion
–  Rejection methods
–  Transformations
–  Composition (mixtures)
–  Sums, products, ratios, …
–  Table lookup + interpolation
–  Lots (!) of other tricks

•  Typically < 5 - 10% of total CPU time

Random Sampling – Beyond the Basics AMC-21 - 5 LA-UR-18-20247

Random Sampling - Basics

"Anyone who considers arithmetical methods of producing
random digits is, of course, in a state of sin."

 John Von Neuman, 1951

Random Sampling – Beyond the Basics AMC-21 - 6 LA-UR-18-20247

Probability ?

What are the odds of …..

•  Being audited by the IRS this year 100 to 1

•  Losing your luggage on a U.S. flight 176 to 1

•  Being dealt 4 aces on an opening poker hand 4,164 to 1

•  Being struck by lightning in your lifetime 9,100 to 1

•  Being hit by a baseball at a major league game 300,000 to 1

•  Drowning in your bathtub this year 685,000 to 1

•  Winning the Powerball jackpot with 1 ticket 292,201,338 to 1

Yet we all still keep buying Powerball tickets, but don’t worry too much about lightning…

Introduction

Random Sampling – Beyond the Basics AMC-21 - 7 LA-UR-18-20247

Simple Random Sampling (1)

•  Suppose we have 2 items, A and B
–  PA = probability of randomly picking item A = 25% = 0.25
–  PB = probability of randomly picking item B = 75% = 0.75

–  PA + PB = 1.0

•  Random sampling - pick A or B

 Generate a random number R
in the range (0,1)

 If R < .25 ➜ select A
 Otherwise ➜ select B

PA = .25

PB = .75

0

.25

1.0

Cumulative
Probabilities

Random Sampling – Beyond the Basics AMC-21 - 8 LA-UR-18-20247

Simple Random Sampling (2)

•  Suppose we have 3 items, A, B, and C
–  PA = probability of randomly picking item A = 25% = 0.25
–  PB = probability of randomly picking item B = 50% = 0.50
–  PC = probability of randomly picking item C = 25% = 0.25

–  PA + PB + PC = 1.0

•  Random sampling - pick A or B or C

Generate a random number R
in the range (0,1)

If R < .25 ➜ select A
Else If .25 < R < .75 ➜ select B
Otherwise ➜ select C

PA = .25

PB = .50

0

.25

1.0
PC = .25

.75

Cumulative
Probabilities

Random Sampling – Beyond the Basics AMC-21 - 9 LA-UR-18-20247

Simple Random Sampling (3)

•  Random sampling - pick A or B or C
–  PA = probability of randomly picking item A = 25% = 0.25
–  PB = probability of randomly picking item B = 50% = 0.50
–  PC = probability of randomly picking item C = 25% = 0.25
–  PA + PB + PC = 1.0

0

.25

A B C

.50

Cumulative
Probabilities

A B C
0

.25

.50

.75
1.0

Discrete
Probabilities

Generate a
random number R
in the range (0,1),

Pick A, B, or C

Random Sampling – Beyond the Basics AMC-21 - 10 LA-UR-18-20247

Probability Density Functions

•  Continuous Probability Density

•  Discrete Probability Density

f(x) = probability density function (PDF)
f(x) ≥ 0

Probability{a ≤ x ≤ b} = f(x)dx
a

b

∫

Normalization: f(x)dx = 1
-∞

∞

∫

{ fk }, k = 1,...,N, where fk = f(xk)
fk ≥ 0
Probability{ x = x k } = fk

Normalization: fk = 1
k=1

N

∑

Random Sampling – Beyond the Basics AMC-21 - 11 LA-UR-18-20247

Continuous PDF & CDF

•  Probability Density Function (PDF)

•  Cumulative Distribution Function (CDF)

F(x) = f(′x)d ′x
-∞

x

∫
0 ≤ F(x) ≤ 1
dF(x)
dx

≥ 0

F(−∞) = 0, F(∞) = 1

f(x) = probability density function (PDF)
f(x) ≥ 0

Probability{a ≤ x ≤ b} = f(x)dx
a

b

∫

Normalization: f(x)dx = 1
-∞

∞

∫

Note: convention is to use f(x) for PDF, F(x) for CDF

Random Sampling – Beyond the Basics AMC-21 - 12 LA-UR-18-20247

Discrete PDF & CDF

•  Probability Density Function (PDF)

•  Cumulative Distribution Function (CDF)

Note: convention is to use fJ for PDF, FJ for CDF

Random Sampling – Beyond the Basics AMC-21 - 13 LA-UR-18-20247

Random Sampling

The key to Monte Carlo methods is the notion of random sampling.
•  The problem can be stated this way:

 Given a probability density, f(x), produce a sequence of 's.
 The 's should be distributed in the same manner as f(x).

•  The use of random sampling distinguishes Monte Carlo from other

methods

•  When Monte Carlo is used to solve the integral Boltzmann transport
equation:
–  Random sampling models the outcome of physical events

 (e.g., neutron collisions, fission process, sources, …..)

x̂
x̂

Given f(x),
Randomly choose x

Random Sampling – Beyond the Basics AMC-21 - 14 LA-UR-18-20247

Random Sampling

•  Basic procedure for analytic random sampling

①  Convert PDF f(x) to CDF F(x)

②  Generate RN ξ on (0,1)

③  Solve for x: F(x) = ξ

If this is repeated many time, the resulting PDF will approach f(x)

•  Formally

–  Solve for x:

–  Or: x = F-1(ξ)

ξ= f(y)dy
-∞

x

∫

Random Sampling – Beyond the Basics AMC-21 - 15 LA-UR-18-20247

★★★★★ Direct Sampling ★★★★★

•  Direct solution of x = F-1(ξ)

•  Sampling procedure

–  Generate ξ
–  Determine x such that F(x) = ξ

•  Advantages
–  Straightforward mathematics & coding
–  "High-level" approach

•  Disadvantages
–  Often involves complicated functions
–  In some cases, F(x) cannot be inverted (e.g., Klein-Nishina)

Solve for x: ξ= f(y)dy
-∞

x

∫

Random Sampling – Beyond the Basics AMC-21 - 16 LA-UR-18-20247

Discrete PDFs

•  Sampling from Discrete PDF's - Conventional Procedure

 Direct Solution of x' ← F-1(ξ)

 (1) Generate ξ
 (2) Determine k such that Fk-1 ≤ ξ < Fk
 (3) Return x' = xk

•  Step (2) requires a table search
–  Linear table searches require O(N) time - use when N small
–  Binary table searches require O(lnN) time - use when N large

–  An alternative method – alias sampling – eliminates the table search
& requires O(1) time, independent of N

•  For some discrete PDFs, Fk’s are not precomputed.

–  Use linear search, with Fk's computed on-the-fly as needed

Random Sampling – Beyond the Basics AMC-21 - 17 LA-UR-18-20247

Discrete Uniform PDF

•  Example - Sampling from Discrete Uniform PDF

•  Discrete Uniform PDF
–  fk = 1 / N, k = 1, …, N
–  Fk = k / N, F0=0, FN= 1

•  Sampling procedure:

–  Could use table search method,
–  Easier, for this special case:

 k ← 1 + floor(N ξ),

 floor(y) gives largest integer < y

–  Fortran: k = 1 + int(N*rang())

 C: k = 1 + floor(N*rang())

–  Note: must be sure that 1 ≤ k ≤ N

Random Sampling – Beyond the Basics AMC-21 - 18 LA-UR-18-20247

Discrete PDFs - Examples

•  Example – Pick 1 Powerball number, uniform integer in [1,69]

 k = int(1 + 69*rang())

•  Example - loaded die, faces show 2,2,3,4,5,5 – simulate 1 roll

 pdf(1:6) = [0./6., 2./6., 1./6., 1./6., 2./6., 0./6.]
 cdf(1:6) = [0./6., 2./6., 3./6., 4./6., 6./6., 6./6.]

 r = rang()
 do j = 1, 6
 if(r < cdf(j)) then
 k = j
 exit
 endif
 enddo

 {result is k}

This coding is a simple linear search to
determine an integer k in the range [1,6]

Search for the first occurrence of ξ ≤ cdf(j)

Random Sampling – Beyond the Basics AMC-21 - 19 LA-UR-18-20247

•  Multigroup Scattering

–  Scatter from group g to group g', where 1 ≤ g' ≤ G

•  Selection of scattering nuclide for a collision

–  K = number of nuclides in composition

Random Sampling -- Discrete PDFs

f ′g =
σg→ ′g

σg→k
k=1

G

∑

f k =
N(k)σs

(k)

N(j)σs
(j)

j=1

K

∑

Random Sampling – Beyond the Basics AMC-21 - 20 LA-UR-18-20247

★★★★★ Direct Sampling ★★★★★

•  Direct solution of x = F-1(ξ)

•  Sampling procedure

–  Generate ξ
–  Determine x such that F(x) = ξ

•  Advantages
–  Straightforward mathematics & coding
–  "High-level" approach

•  Disadvantages
–  Often involves complicated functions
–  In some cases, F(x) cannot be inverted (e.g., Klein-Nishina)

Solve for x: ξ= f(y)dy
-∞

x

∫

Random Sampling – Beyond the Basics AMC-21 - 21 LA-UR-18-20247

Continuous PDFs - Exponential

Examples - Sampling from an Exponential PDF

 PDF:

 CDF:

Direct sampling:

 Solve for x: F(x) = ξ

 Although (1- ξ) ≠ ξ,
 both ξ and (1- ξ) are uniformly distributed on (0,1),
 so that we can use either in the random sampling procedure.

 i.e., the numbers are different, but the distributions are the same

Solving ξ = 1− e−Σx gives: x ← − ln(1− ξ) / Σ
or

x ← − lnξ / Σ

f(x) = Σ ⋅e−Σx, x > 0

F(x) = f(y)dy
0

x

∫ = Σ ⋅e−Σy dy
0

x

∫ = −e−Σy
0

x
= 1− e−Σx

Random Sampling – Beyond the Basics AMC-21 - 22 LA-UR-18-20247

Continuous PDFs - Uniform

Example - Sampling from uniform PDF in range (a,b),
 Histogram with 1 bin

 PDF: f(x) = 1/(b-a), a ≤ x ≤ b
 = 0 x<a, or x>b

 CDF: F(x) = (x-a)/(b-a), a ≤ x ≤ b

 Sampling scheme: F(x) = ξ, solve for x
 (x-a)/(b-a) = ξ

 x ← a + (b-a) ξ

 Note: Often implemented as:
 f = ξ
 x ← (1-f) a + f b

a b

1/(b-a)
 f(x)

 x à

Random Sampling – Beyond the Basics AMC-21 - 23 LA-UR-18-20247

Continuous PDFs – Linear (1)

Example - Sampling from an increasing linear PDF in range [0,1]

 PDF: f(x) = 2 x, 0 ≤ x ≤ 1

 CDF: F(x) = x2, 0 ≤ x ≤ 1

 Sampling scheme: F(x) = ξ, solve for x
 x2 = ξ

 x ← sqrt(ξ)

 While not obvious, 2 alternative schemes for sampling x are:
 x ← max(ξ1, ξ2)
 x ← 1 – abs(ξ1 – ξ2)

0 1

f(x)

X à

2

Random Sampling – Beyond the Basics AMC-21 - 24 LA-UR-18-20247

Continuous PDFs – Linear (2)

Example - Sampling from a decreasing linear PDF in range [0,1]

 PDF: f(x) = 2 - 2x, 0 ≤ x ≤ 1

 CDF: F(x) = 2x - x2, 0 ≤ x ≤ 1

 Sampling scheme: F(x) = ξ, solve for x
 2x-x2 = ξ
 x2 - 2x + 1 = 1 – ξ
 (x-1)2 = 1 - ξ
 x – 1 = ± sqrt(1-ξ)

 Choose the minus sign for correct range in x:
 x ← 1 - sqrt(1-ξ)
 Or, since ξ and 1-ξ have the same distribution:
 x ← 1 - sqrt(ξ)

0 1

f(x)

X à

2

Random Sampling – Beyond the Basics AMC-21 - 25 LA-UR-18-20247

Continuous PDFs – Power Law on [0,1]

Example - Sampling from power law PDF in range [0,1],

 PDF: f(x) = (n+1) xn, n>0, 0 ≤ x ≤ 1
 = 0 x < 0, or x > 1

 CDF:

 Sampling scheme: F(x) = ξ, solve for x

 xn+1 = ξ

 x ← ξ 1/(n+1)

 For power laws on [0,1]:
 n=1: f(x) = 2x, F(x) = x2, x ← √ξ
 n=2: f(x) = 3x2, F(x) = x3, x ← ∛ξ
 n=3: f(x) = 4x3, F(x) = x4, x ← ∜ξ

F(x) = f (y)dy = (n +1) ⋅ yn dy
0

x

∫
0

x

∫ = (n +1) ⋅ y
n+1

n +1 0

x

= xn+1, 0 ≤ x ≤1

Note : (n +1) is necessary, so that f (′x)d ′x = 1
0

∞

∫

Random Sampling – Beyond the Basics AMC-21 - 26 LA-UR-18-20247

Direct Sampling – Common PDFs

Random Sampling – Beyond the Basics AMC-21 - 27 LA-UR-18-20247

Linear Transformations
&

Scaling

Random Sampling – Beyond the Basics AMC-21 - 28 LA-UR-18-20247

Continuous PDFs - Uniform

Example – Shifting & Scaling a 1-bin Histogram

PDF: f(x) = 1 f(x) = 1/(b-a)

CDF: F(x) = x F(x) = (x-a)/(b-a)

Range: [0, 1] [a, b]

Sampling: x ← ξ x ← a + (b-a) ξ

a b

1/(b-a)
 f(x)

 x à0 1

1

 Shift Scale

Random Sampling – Beyond the Basics AMC-21 - 29 LA-UR-18-20247

Continuous PDFs - Linear

Example – Shifting & Scaling a unit linear PDF

PDF: f(x) = 2x f(x) = 2 (x-a)/(b-a)2

CDF: F(x) = x2 F(x) = [(x-a)/(b-a)]2

Range: [0, 1] [a, b]

Sampling: x ← √ξ x ← a + (b-a) √ξ

a b

2/(b-a)
 f(x)

 x à0 1

2

 Shift Scale

Random Sampling – Beyond the Basics AMC-21 - 30 LA-UR-18-20247

Composition
Methods

Random Sampling – Beyond the Basics AMC-21 - 31 LA-UR-18-20247

Composition Method

•  A complicated PDF . . .

•  . . . Can be decomposed into a sum of simpler PDFs

 f(x) = pA fA(x) + pB fB(x) + pC fC(x)

 where pA + pB + pC = 1

 and each piece of the PDF is scaled s.t. area is 1

•  Sampling then proceeds in 2 steps:

①  Discrete sampling from { pA, pB, pC } to select A, B, or C

②  Continuous sampling within the chosen PDF piece

A B C
f(x)

Random Sampling – Beyond the Basics AMC-21 - 32 LA-UR-18-20247

•  A PDF can be decomposed in many different ways . . .

 f(x) = pA fA(x) + pB fB(x) + pC fC(x)

f(x)

A
B C

f(x)

A
B

C

Composition Method

f(x)

A
B C

Random Sampling – Beyond the Basics AMC-21 - 33 LA-UR-18-20247

Continuous PDFs - Histogram

Example - Sampling from histogram with 2 bins

 A1 = (x1-x0)·f1
 A2 = (x2-x1)·f2

 p1 = Prob{ x0 < x < x1 } = A1 / (A1+A2)
 p2 = Prob{ x1 < x < x2 } = A2 / (A1+A2)
 p1 + p2 = 1

Two-step sampling procedure:

 1. Select a bin, b:
 If ξ1 < p1, select b = bin 1
 otherwise, select b = bin 2
 2. Sample x within bin:
 x ← xb-1 + ξ2·(xb-xb-1)

x0 x1 x2

 f(x)
Bin 1 Bin 2

 f1

 f2

Random Sampling – Beyond the Basics AMC-21 - 34 LA-UR-18-20247

Continuous PDFs - Histograms

Example - Sampling from Histogram PDF

Two-step sampling: (1) Sample from discrete PDF to select a bin

 (2) Sample from uniform PDF within bin

•  Discrete PDF: pk = fk·(xk-xk-1), k = 1, …, N, Σpk = 1

–  Generate ξ1
–  Use table search to select k

•  Uniform sampling within bin k
–  Generate ξ2
–  Then, x ← xk-1 + (xk-xk-1)·ξ2

x0 x1 x2

 f(x) f1

 f2

x5x4x3

 f3
 f4

 f5

Random Sampling – Beyond the Basics AMC-21 - 35 LA-UR-18-20247

Continuous PDFs – Linear

Example - Sampling from linear PDF in range [a,b], 1 bin

 PDF: f(x) = fa + m (x-a), m = (fb-fa)/(b-a), a ≤ x ≤ b

 CDF: F(x) = (m/2) x2 + (fa-ma) x + (ma2/2 – faa)
 = A x2 + B x + C

 Sampling scheme: F(x) = ξ, solve for x
 x = { -B ± sqrt(B2 – 4A(C-ξ) } / 2A

 è Awfully complicated, and sensitive to numerical roundoff
 è There must be a simpler scheme (there is …)

a b

f(x)

X à

fa

fb

Random Sampling – Beyond the Basics AMC-21 - 36 LA-UR-18-20247

Continuous PDFs – Linear

Example - Sampling from linear PDF in range [a,b], 1 bin

Composition method #1

 Decompose the original PDF into the
sum of 2 PDFs, uniform + linear:

 f(x) = pu u(x) + pl l(x)

 u(x) = uniform on a ≤ x ≤ b,
 pu = { min(fa,fb) (b-a) } / { .5(fa+fb) (b-a) }

 l(x) = linear on a ≤ x ≤ b,
 pl = { .5 abs(fb-fa) (b-a) } / { .5(fa+fb) (b-a) }

 Sampling scheme: if(ξ1 < pu)
 x ← a + (b-a) ξ2
 else
 if(fb > fa) x ← a + (b-a) sqrt(ξ2)
 else x ← a + (b-a) (1 - sqrt(ξ2))

a b

f(x)

X à

fa

fb

a b

u(x) 1/(b-a)

a b

l(x) 2/(b-a)

Random Sampling – Beyond the Basics AMC-21 - 37 LA-UR-18-20247

Continuous PDFs – Linear

Increasing linear PDF

 Random sampling can be done
with a simple shifting & scaling
of the unit PDF:

 x ← a + (b-a) sqrt(ξ)

Decreasing linear PDF

 Random sampling can be done
with a simple shifting & scaling
of the unit PDF:

 x ← a + (b-a) (1 - sqrt(ξ))

a b

f(x)

X à

2/(b-a)

a b

f(x)

X à

2/(b-a)

Random Sampling – Beyond the Basics AMC-21 - 38 LA-UR-18-20247

Continuous PDFs – Linear

Example - Sampling from linear PDF in range [a,b], 1 bin

Composition method #2

 Decompose the original PDF into the
sum of 2 PDFs, increasing + decreasing linear:

 f(x) = pm m(x) + pl l(x)

 m(x) = linear decreasing on a ≤ x ≤ b,
 pm = { .5 fa (b-a) } / { .5(fa+fb) (b-a) }
 = fa / (fa+fb)

 l(x) = linear increasing on a ≤ x ≤ b,
 pl = { .5 fb (b-a) } / { .5(fa+fb) (b-a) }

 = fb / (fa+fb)

 Sampling scheme: if(ξ1 < pl)
 x ← a + (b-a) sqrt(ξ2)
 else
 x ← a + (b-a) (1 - sqrt(ξ2))

a b

f(x)

X à

fa

fb

a b

m(x) 2/(b-a)

a b

l(x) 2/(b-a)

Random Sampling – Beyond the Basics AMC-21 - 39 LA-UR-18-20247

Continuous PDFS – Piecewise Linear

Random Sampling – Beyond the Basics AMC-21 - 40 LA-UR-18-20247

Rejection
Methods

Random Sampling – Beyond the Basics AMC-21 - 41 LA-UR-18-20247

Rejection Sampling

•  Von Neumann:
 " it seems objectionable to compute a
 transcendental function of a random number. "

•  Select a bounding function, g(x), such that
 • c ≥ g(x) > f(x) for all x
 • g(x) is an easy-to-sample PDF

•  Sampling Procedure:
 • sample x' from g(x): x' ← G-1(ξ1)

 • test: ξ2 ≤ c g(x') < f (x')

 if true ➜ accept x', done
 if false ➜ reject x', try again

•  Advantages
–  Simple computer operations

•  Disadvantages
–  “Low-level” approach, sometimes hard to understand

Random Sampling – Beyond the Basics AMC-21 - 42 LA-UR-18-20247

Rejection Sampling - Examples

•  Sample from a PDF
 f(x) = c · erf(x), 0 ≤ x ≤ 5.

 note: erf(∞) = 1.
Do
 xtry = 5.*rang()
 ftry = 1.*rang()
 if(ftry <= erf(xtry)) exit
Enddo
x = xtry

•  Select (x,y) points uniformly in a disk
Do
 x = 2.*rang() - 1.
 y = 2.*rang() – 1.
 if(x**2 + y**2 < 1.0) exit
Enddo

X à
0 5

0

1

 f(x) keep

reject

X à
Y
à

-1

1

1
-1

keep

reject

Random Sampling – Beyond the Basics AMC-21 - 43 LA-UR-18-20247

Direct vs. Rejection - 2D Direction Cosines

Random Sampling – Beyond the Basics AMC-21 - 44 LA-UR-18-20247

Isotropic Scatter – Sampling the Scattering Angle

•  Consider isotropic scattering
–  Any direction is equally likely
–  Interpret as:

"pick a random point on a unit sphere,
 then get direction-cosines"

•  Rejection method for scatter
angle sampling
–  Pick x,y,z randomly in unit cube
–  If x,y,z outside unit sphere,

reject and try again
–  If x,y,z inside unit sphere,

scale so that x2+y2+z2 = 1
–  Get direction-cosines of angles, u,v,w

•  Direct method for scatter
angle sampling

➜ µ is distributed uniformly in [-1,1]
➜ φ is distributed uniformly in [0,2π]

 µ ← 2ξ1 - 1
 φ ← ξ2 2 π

φ

θ
μ= cos θ

f(Ω̂) = 1
4π

, dΩ̂
4π

= sinθ ⋅dθ
2

⋅ dφ
2π

f(θ,φ) = sinθ ⋅dθ
2

⋅ dφ
2π

, 0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π

f(θ) = f(θ,φ)dφ = sinθ
20

2π

∫
µ = cosθ, dµ = −sinθ ⋅dθ, −1≤ µ ≤ +1

f(µ) = f(θ) dθ
dµ

= sinθ
2

⋅ 1
sinθ

= 1
2

Random Sampling – Beyond the Basics AMC-21 - 45 LA-UR-18-20247

Miscellaneous

Random Sampling – Beyond the Basics AMC-21 - 46 LA-UR-18-20247

Continuous PDFs – Linear (8)

 We have seen that a simple, increasing linear PDF in the range
[0,1] can be sampled directly by inverting the CDF to obtain:

 PDF: f(x) = 2 x, 0 ≤ x ≤ 1
 CDF: F(x) = x2, 0 ≤ x ≤ 1
 Sampling scheme:
 F(x) = ξ, solve for x
 x ← sqrt(ξ)

 While not obvious, some other schemes for sampling x are:
 x = ξ1
 r = ξ2
 if(r > x) x = r

 x ← max(ξ1, ξ2)

 x ← 1 – abs(ξ1 – ξ2)

0 1

f(x)

X à

2

Why consider these other schemes?

Sqrt() function used to be very expensive. The other
schemes involve only simple non-arithmetic
operations & were much faster.

Today, sqrt() operations & computers are very fast –
sqrt() is as fast as generating a 2nd RN. We usually go
with the more obvious direct method.

BUT, the older schemes are still commonly used in
production MC codes. Learn to recognize them.

Random Sampling – Beyond the Basics AMC-21 - 47 LA-UR-18-20247

Stratified Sampling

Random Sampling – Beyond the Basics AMC-21 - 48 LA-UR-18-20247

Random Sampling -- References

Every Monte Carlo code developer who works with random sampling should own &
read these references:

–  D. E. Knuth, The Art of Computer Programming, Vol. 2: Semi-numerical

Algorithms, 3rd Edition, Addison-Wesley, Reading, MA (1998).

–  L. Devroye, Non-Uniform Random Variate Generation, Springer-Verlag, NY
(1986).

–  J. von Neumann, "Various Techniques Used in Conjunction with Random
Digits," J. Res. Nat. Bur. Stand. Appl. Math Series 3, 36-38 (1951).

–  C. J. Everett and E. D. Cashwell, "A Third Monte Carlo Sampler," LA9721-MS,
Los Alamos National Laboratory, Los Alamos, NM (1983).

–  H. Kahn, "Applications of Monte Carlo," AECU-3259, Rand Corporation, Santa
Monica, CA (1954).

Optimal Random Sampling from Piecewise Linear PDFs AMC-22 - 1LA-UR-18-20247

Forrest B. Brown

National Laboratory Professor, UNM-NE
Senior R&D Scientist, Monte Carlo, LANL

Optimal Random Sampling
from Piecewise Linear
Probability Density Functions

Advanced
Computational

Methods for
Monte Carlo
Calculations

Optimal Random Sampling from Piecewise Linear PDFs AMC-22 - 2LA-UR-18-20247

Outline

• Introduction

• Piecewise-Linear PDFs

• Conventional Approach to Random Sampling
– Binary search in CDF
– Direct inversion of iin PDF

• Optimal Approach
– Alias sampling for CDF
– Composition method for bin PDF

Optimal Random Sampling from Piecewise Linear PDFs AMC-22 - 3LA-UR-18-20247

Introduction

• Continuous Probability Density Functions (PDFs) are frequently
approximated by tabulated piecewise-linear PDFs

– Bin widths can be chosen adaptively to minimize relative error

• This lecture addresses cases where the PDFs are
– Known at problem setup, prior to running any particle histories
– Small to moderate number of entries, so that preprocessing & some

extra storage is practical
– Sampled often-enough during particle histories that any preprocessing

time is unimportant
– Generally most useful for PDFs found in source sampling & collision

physics (exit energy & angle)

x1 x9x8x7x6x5x4x3x2

f(x)

f1

f2

f3

f4 f5

f6 f7 f8 f9

x →

Optimal Random Sampling from Piecewise Linear PDFs AMC-22 - 4LA-UR-18-20247

Conventional Approach to
Random Sampling from a

Piecewise Linear PDF

Optimal Random Sampling from Piecewise Linear PDFs AMC-22 - 5LA-UR-18-20247

Piecewise Linear PDFs

• Many PDFs are represented as tabulated piecewise linear
functions of E, 𝜇, x, …

– Probability Density
Function (PDF), f(x)

N points, N-1 bins

– Cumulative Distribution
Function (CDF), F(x)

Quadratic shape within bins

• Usually stored as linear arrays:
x(1..N) = [x1, x2, …, xN]
f(1..N) = [f1, f2, …, fN]
F(1..N) = [F1, F2, …, FN]

x1 x9x8x7x6x5x4x3x2

F(x)

F1
F2

F3

F4

F5
F6 F7

F8 F9

x →

1.0

x1 x9x8x7x6x5x4x3x2

f(x)
f1

f2

f3
f4 f5

f6 f7 f8 f9

x →

Optimal Random Sampling from Piecewise Linear PDFs AMC-22 - 6LA-UR-18-20247

Conventional Sampling Technique

• Data:
x(1..N) = [x1, x2, …, xN]
f(1..N) = [f1, f2, …, fN]
F(1..N) = [F1, F2, …, FN] ß computed at problem setup

• Two steps are required:

1. Randomly sample a bin, k

• r = ξ
• Search the CDF array to find the bin k containing r,

Fk ≤ r ≤ Fk+1, 1 ≤ k ≤ N-1

2. Sample x’ from the linear PDF within bin k
Linear PDF from (xk, fk) to (xk+1, fk+1) è Quadratic CDF, F(x)

• r = ξ
• Solve for x’: r = F(x’)

Optimal Random Sampling from Piecewise Linear PDFs AMC-22 - 7LA-UR-18-20247

Search Algorithms

• There is extensive literature on search algorithms
– D.E. Knuth, The Art of Computer Programming Vol 3 - Sorting &

Searching
– Many other references - books & journals

• For general Monte Carlo codes with cross-section data, the
commonly-used methods are linear search &/or binary search

– Linear search takes O(N) time, best when N ~ 10 or less

– Binary search takes O(ln N) time, best when N ~ large

– Linear searches are easier to program, less prone to code errors

– For both linear & binary searches, need to consider
what to do if x < x1 or x > xN (x outside table)
• Best to avoid this
• Error stop? Use endpoint? Extrapolate?

Optimal Random Sampling from Piecewise Linear PDFs AMC-22 - 8LA-UR-18-20247

Binary Search to Sample Bin

• Given x and data table: N, table(1..N)
• Find k such that: tablek ≤ target ≤ tablek+1, 1 ≤ k ≤ N-1

int binary_search(int* n,
double* table,

 double* target)
{
int jfirst, jlast, jmid;
jfirst = 0;
jlast = *n – 1;

for(;;) {
if(jlast-jfirst == 1) break;
jmid = (jfirst+jlast)/2;
if(*target >= table[jmid]) {
jfirst = jmid;

}
else {
jlast = jmid;

}
}
return jfirst+1;

}

For use in random sampling, target is
an RN in (0,1) so that an error check
on out-of-range is not needed.

Not obvious, but:
• Guaranteed to terminate
• Guaranteed result in [1, N-1]

Optimal Random Sampling from Piecewise Linear PDFs AMC-22 - 9LA-UR-18-20247

Continuous PDFs – Linear

Example - Sampling from linear PDF bin k

PDF: f(x) = fk + m (x-xk), m = (fk+1-fk)/(xk+1-xk), xk ≤ x ≤ xk+1

CDF: F(x) = (m/2) x2 + (fk-mxk) x + (mxk
2/2 – fkxk)

= A x2 + B x + C

Sampling scheme: F(x) = ξ, solve for x
x = { -B + sqrt(B2 – 4A[C-ξ]) } / 2A

(always want +sqrt)

è Awfully complicated, and sensitive to numerical roundoff
è There must be a simpler scheme (there is …)

xk xk+1

f(x)

X à

fk

fk+1
Note: normalized such that

0.5*(fk+fk+1)*(xk+1-xk)=1

Optimal Random Sampling from Piecewise Linear PDFs AMC-22 - 10LA-UR-18-20247

Conventional Sampling in Bin k

double linear_sample_std(int *n,
double x[],
double pdf[],
int *k){

double x0,p0, x1,p1, r,s, a,b,c,d;

p0=pdf[*k-1], p1=pdf[*k], x0=x[*k-1], x1=x[*k];
r = 2.0/((p0+p1)*(x1-x0));
p0*=r; p1*=r;

s = (p1-p0)/(x1-x0);
a = 0.5*s;
b = p0-s*x0;
c = .5*s*x0*x0 - p0*x0 - rang();
d = b*b - 4.*a*c;
d = (d<0.0) ? 0.0 : d; // sloppy, set negative roundoff to zero

return .5*(-b+sqrt(d))/a;
}

Optimal Random Sampling from Piecewise Linear PDFs AMC-22 - 11LA-UR-18-20247

Conventional Sampling

!=====> in problem setup, given x(N) & pdf(N), find cdf(N)

cdf(1) = 0.0
do k=2,N
cdf(k) = cdf(k-1) + 0.5*(pdf(k)+pdf(k-1)) * (x(k)-x(k-1))

endo

!=====> during particle histories

!---> random sample bin k
r = rang()
k = binary_search(N, cdf, r)

!---> sample xsample within bin k
xsample = linear_sample(N, x, pdf, k)

Optimal Random Sampling from Piecewise Linear PDFs AMC-22 - 12LA-UR-18-20247

Optimal Approach to
Random Sampling from a

Piecewise Linear PDF

Optimal Random Sampling from Piecewise Linear PDFs AMC-22 - 13LA-UR-18-20247

Outline

• Selecting the bin
– First try to hand-optimize the search coding
– Then look at a better algorithm – eliminate the search by alias method

• Sampling within the bin
– Examine an often-used composition method
– Examine a better composition method

• Final results
– Robust within bin sampling – immune to roundoff & faster
– No table search, due to alias method
– Constant time

• Using linear table search, t ~ O(N)
• Using binary table search, t ~ O(logN)
• Using alias method, t ~ O(1)

– Overall speedup ~ 10-100x or more

Optimal Random Sampling from Piecewise Linear PDFs AMC-22 - 14LA-UR-18-20247

Binary Search - Variations

Basic MCNP binary search

int binary_search(int* n,
double* table,

 double* target)
{
int jfirst, jlast, jmid;
jfirst = 0;
jlast = *n – 1;

for(;;) {
if(jlast-jfirst == 1) break;
jmid = (jfirst+jlast)/2;
if(*target >= table[jmid]) {
jfirst = jmid;

}
else {
jlast = jmid;

}
}
return jfirst+1;

}
n=16 6.7 ns
n=128 14.6 ns
n=1024 24.9 ns

Basic binary search, with shift

int binary_search1(int* n,
double* table,

 double* target)
{
int jfirst, jlast, jmid;
jfirst = 0;
jlast = *n – 1;

for(;;) {
if(jlast-jfirst == 1) break;
jmid = (jfirst+jlast) >> 1;
if(*target >= table[jmid]) {
jfirst = jmid;

}
else {
jlast = jmid;

}
}
return jfirst+1;

}
n=16 5.4 ns
n=128 12.2 ns
n=1024 19.0 ns

MacBook Pro
3.5 GHz I7
2.1 Ghz LPDDR3

Optimal Random Sampling from Piecewise Linear PDFs AMC-22 - 15LA-UR-18-20247

Binary Search - Variations

Basic binary search, with shift

int binary_search1(int* n,
double* table,

 double* target)
{
int jfirst, jlast, jmid;
jfirst = 0;
jlast = *n – 1;

for(;;) {
if(jlast-jfirst == 1) break;
jmid = (jfirst+jlast) >> 1;
if(*target >= table[jmid]) {
jfirst = jmid;

}
else {
jlast = jmid;

}
}
return jfirst+1;

}
n=16 5.4 ns
n=128 12.2 ns
n=1024 19.0 ns

Basic binary search, with shift+merge

int binary_search2(int* n,
double* table,

 double* target)
{
int jfirst, jlast, jmid;
jfirst = 0;
jlast = *n – 1;

for(;;) {
if(jlast-jfirst == 1) break;
jmid = (jfirst+jlast) >> 1;
jtest = *target >= table[jmid];

jfirst = (jtest) ? jmid : jfirst;

jlast = (jtest) ? jlast : jmid;

}
return jfirst+1;

}
n=16 5.3 ns
n=128 12.4 ns
n=1024 19.1 ns

MacBook Pro
3.5 GHz I7
2.1 Ghz LPDDR3

Optimal Random Sampling from Piecewise Linear PDFs AMC-22 - 16LA-UR-18-20247

Binary Search - Variations

Basic binary search, with goto

int binary_search3(int* n,
double* table,

 double* target)
{
int jfirst, jlast, jmid;
jfirst = 0;
jlast = *n – 1;

more:
if(jlast-jfirst == 1) goto done;
jmid = (jfirst+jlast) >> 1;
jtest = *target >= table[jmid];
jfirst = (jtest) ? jmid : jfirst;
jlast = (jtest) ? jlast : jmid;
goto more;

done:
return jfirst+1;

}
n=16 5.6 ns
n=128 12.2 ns
n=1024 19.1 ns

Basic binary search, with shift+merge

int binary_search2(int* n,
double* table,

 double* target)
{
int jfirst, jlast, jmid;
jfirst = 0;
jlast = *n – 1;

for(;;) {
if(jlast-jfirst == 1) break;
jmid = (jfirst+jlast) >> 1;
jtest = *target >= table[jmid];
jfirst = (jtest) ? jmid : jfirst;
jlast = (jtest) ? jlast : jmid;

}
return jfirst+1;

}
n=16 5.3 ns
n=128 12.4 ns
n=1024 19.1 ns

MacBook Pro
3.5 GHz I7
2.1 Ghz LPDDR3

Optimal Random Sampling from Piecewise Linear PDFs AMC-22 - 17LA-UR-18-20247

Binary Search - Variations

Basic binary search, with no if-tests

int binary_search4(int* n,
double* table,

 double* target)
{
int jfirst, jlast, jmid, k, m;
jfirst = 0;
jlast = *n – 1;
k = jlast – jfirst + 1;
m = 32 - leadz(&k);
for(k=0; k<m; k++) {

jmid = (jfirst+jlast) >> 1;
jtest = *target >= table[jmid];
jfirst = (jtest) ? jmid : jfirst;
jlast = (jtest) ? jlast : jmid;

}
return jfirst+1;

}
n=16 6.6 ns
n=128 11.7 ns
n=1024 17.9 ns

Basic binary search, with shift+merge

int binary_search2(int* n,
double* table,

 double* target)
{
int jfirst, jlast, jmid;
jfirst = 0;
jlast = *n – 1;

for(;;) {
if(jlast-jfirst == 1) break;
jmid = (jfirst+jlast) >> 1;
jtest = *target >= table[jmid];
jfirst = (jtest) ? jmid : jfirst;
jlast = (jtest) ? jlast : jmid;

}
return jfirst+1;

}
n=16 5.3 ns
n=128 12.4 ns
n=1024 19.1 ns

MacBook Pro
3.5 GHz I7
2.1 Ghz LPDDR3

Optimal Random Sampling from Piecewise Linear PDFs AMC-22 - 18LA-UR-18-20247

Table Search – Timing Summary

• For randomly generated PDFs & randomly sampled targets
• Lookup time (nanosec) vs number of bins:

N	bins	= 2 4 8 16 32 64 128 256 512 1024

Linear 6.0 9.2 11.7 13.4 18.2 25.2 40.4 72.4 139.4 270.7

Binary 1.6 2.6 4.3 6.7 9.3 11.6 14.6 18.0 21.5 24.9

Binary,	shift 1.4 2.2 3.5 5.4 7.3 9.2 12.2 14.1 15.7 19.0

Binary,	shift,	merge 1.4 2.2 3.5 5.3 7.6 9.4 12.4 14.4 16.2 19.1

Binary,	goto 1.3 2.2 3.4 5.6 7.3 9.2 12.2 14.1 15.7 19.1

Binary,	no	if-tests 2.6 3.6 5.0 6.6 8.2 9.8 11.7 13.8 15.7 17.9

MacBook Pro
3.5 GHz I7
2.1 Ghz LPDDR3

0

100

200

300

0 200 400 600 800 1000

Linear
Binary

Optimal Random Sampling from Piecewise Linear PDFs AMC-22 - 19LA-UR-18-20247

Alias Sampling

Optimal Random Sampling from Piecewise Linear PDFs AMC-22 - 20LA-UR-18-20247

Alias Sampling

Optimal Random Sampling from Piecewise Linear PDFs AMC-22 - 21LA-UR-18-20247

Alias Sampling - Setup
void alias_setup(int* n,

double* prob,
double* aiq)

{
// set up aiq[] array for alias sampling,
// using FB Brown method, with 1-based indexing for aiq()
double eps = 1e-10, onep=1e0+eps, onem=1e0-eps;
int is[*n], ig[*n], j, js, jg, ls, lg;
double p[*n];

// initial index lists of smaller/greater
ls = -1;
lg = -1;
for(j=0; j<*n; j++) {
p[j] = (*n) * prob[j];
if(p[j]<onem) is[++ls] = j;
else if(p[j]>onep) ig[++lg] = j;

}

// fill the aiq[] array
for(j=0; j<*n; j++) aiq[j] = j;
lg = 0;
while(ls>=0) {
js = is[ls--];
jg = ig[lg];
aiq[js] = jg + p[js]; // aiq = (index of alias).(prob of non-alias)
p[jg] += p[js] - 1e0;
if(p[jg]<onem) is[++ls] = ig[lg];
if(p[jg]<onep) lg++;

}
// change from 0-based to 1-based for aiq[]
for(j=0; j<*n; j++) aiq[j] += 1e0;
return;

}

Optimal Random Sampling from Piecewise Linear PDFs AMC-22 - 22LA-UR-18-20247

Alias Sampling - Sample

int alias_sample(int* n,
double* aiq)

{
// use alias sampling,
// return index in range [1,n]
int bin, alias;
double r, q;

r = (*n)*rang(); bin = r; r -= bin;
q = aiq[bin++]; alias = q; q -= alias;

if(r>q) bin = alias;

return bin;

}

Optimal Random Sampling from Piecewise Linear PDFs AMC-22 - 23LA-UR-18-20247

Alias Sampling - Timing

Alias Sampling

Binary search

Linear search

Optimal Random Sampling from Piecewise Linear PDFs AMC-22 - 24LA-UR-18-20247

Continuous PDFs – Linear

Example - Sampling from linear PDF bin k

PDF: f(x) = fk + m (x-xk), m = (fk+1-fk)/(xk+1-xk), xk ≤ x ≤ xk+1

CDF: F(x) = (m/2) x2 + (fk-mxk) x + (mxk
2/2 – fkxk)

= A x2 + B x + C

Sampling scheme: F(x) = ξ, solve for x
x = { -B + sqrt(B2 – 4A[C-ξ]) } / 2A

(always want +sqrt)

è Awfully complicated, and sensitive to numerical roundoff
è There must be a simpler scheme (there is …)

xk xk+1

f(x)

X à

fk

fk+1
Note: normalized such that

0.5*(fk+fk+1)*(xk+1-xk)=1

Optimal Random Sampling from Piecewise Linear PDFs AMC-22 - 25LA-UR-18-20247

Continuous PDFs – Linear

Example - Sampling from linear PDF in range [a,b], 1 bin

Composition method #1
Decompose the original PDF into the
sum of 2 PDFs, uniform + linear:

f(x) = pu u(x) + pl l(x)

u(x) = uniform on a ≤ x ≤ b,
pu = { min(fa,fb) (b-a) } / { .5(fa+fb) (b-a) }

l(x) = linear on a ≤ x ≤ b,
pl = { .5 abs(fb-fa) (b-a) } / { .5(fa+fb) (b-a) }

Sampling scheme: if(ξ1 < pu)
x ← a + (b-a) ξ2

else
if(fb > fa) x ← a + (b-a) sqrt(ξ2)
else x ← a + (b-a) (1 - sqrt(ξ2))

a b

f(x)

X à

fa

fb

a b

u(x) 1/(b-a)

a b

l(x) 2/(b-a)

Optimal Random Sampling from Piecewise Linear PDFs AMC-22 - 26LA-UR-18-20247

Continuous PDFs – Linear

Increasing linear PDF

Random sampling can be done
with a simple shifting & scaling
of the unit PDF:

x ← a + (b-a) sqrt(ξ)

Decreasing linear PDF

Random sampling can be done
with a simple shifting & scaling
of the unit PDF:

x ← a + (b-a) (1 - sqrt(ξ))

a b

f(x)

X à

2/(b-a)

a b

f(x)

X à

2/(b-a)

Optimal Random Sampling from Piecewise Linear PDFs AMC-22 - 27LA-UR-18-20247

Continuous PDFs – Linear

Example - Sampling from linear PDF in range [a,b], 1 bin

Composition method #2
Decompose the original PDF into the
sum of 2 PDFs, increasing + decreasing linear:

f(x) = pm m(x) + pl l(x)

m(x) = linear decreasing on a ≤ x ≤ b,
pm = { .5 fa (b-a) } / { .5(fa+fb) (b-a) }

= fa / (fa+fb)

l(x) = linear increasing on a ≤ x ≤ b,
pl = { .5 fb (b-a) } / { .5(fa+fb) (b-a) }

= fb / (fa+fb)

Sampling scheme: if(ξ1 < pl)
x ← a + (b-a) sqrt(ξ2)

else
x ← a + (b-a) (1 - sqrt(ξ2))

a b

m(x) 2/(b-a)

a b

l(x) 2/(b-a)

a b

f(x)

X à

fa

fb

Optimal Random Sampling from Piecewise Linear PDFs AMC-22 - 28LA-UR-18-20247

Composition Method for Sampling within Bin k

double linear_sample_new(int *n, // num of points
double x[], // x[*n]
double pdf[], // pdf[*n]
int *k) // bin number,

// 1-based
{
double r, p;

// next line could have been precomputed, in place of pdf[]
p = pdf[*k] / (pdf[*k-1] + pdf[*k]);

r = sqrt(rang());

if(rang() > p) r = 1.0-r;

return x[*k-1] + (x[*k]-x[*k-1])*r;
}

Optimal Random Sampling from Piecewise Linear PDFs AMC-22 - 29LA-UR-18-20247

Continuous PDFs – Linear

Optimal Random Sampling from Piecewise Linear PDFs AMC-22 - 30LA-UR-18-20247

Combined Alias & Linear PDF Sampling

• Combined: alias sampling to select a bin, then
composition method for linear pdf sampling

double alias_sample_linear_pdf(int *npts,
double x[], // [npts]
double pdf[], // [npts]
double aiq[]) // [npts-1]

{
// Note: below uses 0-based indexing, C-style
int nbin, bin, alias;
double r, q;

nbin = *npts - 1;

// use alias sampling, get bin in range [0,nbin-1]
r = nbin*rang(); bin = r; r -= bin;
q = aiq[bin]; alias = q; q -= alias;
if(r>q) bin = --alias;

// linear sampling within bin, composition method
r = sqrt(rang());
if(rang()*(pdf[bin]+pdf[bin+1]) > pdf[bin+1]) r = 1.0-r;
return x[bin] + (x[bin+1]-x[bin])*r;

}

Optimal Random Sampling from Piecewise Linear PDFs AMC-22 - 31LA-UR-18-20247

Comparison of Sampling Times
• Compare:

– Standard sampling, with linear search
– Standard sampling, with binary search
– Alias sampling, with composition method

• Sampling time (nanosec) vs Number of bins

0
50

100
150
200
250
300

0 200 400 600 800 1000

Std sampling, Lin-srch
Std sampling, Bin-srch
Alias sampling

N	bins	= 2 4 8 16 32 64 128 256 512 1024
Std	sampling,	
linear	search 26.6 34.7 41.7 43.4 47.6 54.6 66.5 96.1 162.6 291.8

Std	sampling,	
binary	search 37.9 41.4 46 48.7 52.1 55.1 58.1 61.7 65 69.1

Alias	sampling 20.5 20.7 21.1 20.7 20.5 20.6 20.5 20.4 20.6 20.7
Alias,	combined 17.6 17.4 17.5 17.4 17.3 17.4 17.4 17.3 17.4 17.6

MacBook Pro
3.5 GHz I7
2.1 Ghz LPDDR3

Optimal Random Sampling from Piecewise Linear PDFs AMC-22 - 32LA-UR-18-20247

Summary

• Optimal sampling method for piecewise-linear PDF
– Alias sampling to select bin (eliminates the search)
– Composition method using increasing/decreasing linear sampling

• Final results
– Robust within bin sampling – immune to roundoff & faster
– No difficulties if x-points are identical
– Can mix delta functions into piecewise-linear PDF
– No table search, due to alias method
– Constant time

• Using linear table search, t ~ O(N)
• Using binary table search, t ~ O(logN)
• Using alias method, t ~ O(1)

– Overall speedup ~ 10-100x or more

Optimal Random Sampling from Piecewise Linear PDFs AMC-22 - 33LA-UR-18-20247

References - Sampling

F.B. Brown, “Monte Carlo Techniques for Nuclear Systems – Theory
Lectures”, Lecture c-t-02 Random Sampling, LA-UR-16-29043 (2016)

D. E. Knuth, The Art of Computer Programming, Vol. 2: Semi-numerical
Algorithms, 3rd Edition, Addison-Wesley, Reading, MA (1998).

D.E. Knuth, The Art of Computer Programming Vol 3 - Sorting & Searching,
3rd Edition, Addison-Wesley, Reading, MA (1998).

L. Devroye, Non-Uniform Random Variate Generation, Springer-Verlag, NY
(1986).

J. von Neumann, "Various Techniques Used in Conjunction with Random
Digits," J. Res. Nat. Bur. Stand. Appl. Math Series 3, 36-38 (1951).

C. J. Everett and E. D. Cashwell, "A Third Monte Carlo Sampler," LA9721-
MS, Los Alamos National Laboratory, Los Alamos, NM (1983).

H. Kahn, "Applications of Monte Carlo," AECU-3259, Rand Corporation,
Santa Monica, CA (1954).

Optimal Random Sampling from Piecewise Linear PDFs AMC-22 - 34LA-UR-18-20247

References – Alias Sampling

A.J. Walker, “An Efficient Method for Generating Discrete Random
Variables with Generalized Distributions”, ACM Trans. Math. Software,
Vol 3, No. 3, 253-256 (Sept, 1977)

R.A. Kronmal, A.V. Peterson Jr, “On the Alias Method for Generating
Random Variables from a Discrete Distribution”, The American
Statistician, Vol 33, No 4, 214-218 (Nov 1979)

F.B. Brown, W.R. Martin, D.A. Callahan, “A Discrete Sampling Method for
Vectorized Monte Carlo Calculations”, Trans. Am. Nucl. Soc. 38, 354
(1981)

M.D. Vose, “A Linear Algorithm for Generating Random Numbers with a
Given Distribution”, IEEE Trans. Software Engineering, Vol 17, No. 9
(Sept, 1991)

G. Marsaglia, "Generating Discrete Random Variables in a Computer,"
Comm. Assoc. of Computing Machinery, 6, 37-38 (1963)

Optimal Random Sampling from Piecewise Linear PDFs AMC-22 - 35LA-UR-18-20247

Optimal Random Sampling from Piecewise Linear PDFs AMC-22 - 36LA-UR-18-20247

Permutations, Sets of N-from-M, Counting-sorts AMC-23 - 1 LA-UR-18-20247

Forrest B. Brown

National Laboratory Professor, UNM-NE
Senior R&D Scientist, Monte Carlo, LANL

Permutations, 
Sets of N-from-M, &  
Counting-Sorts

Advanced
Computational

Methods for
Monte Carlo
Calculations

Permutations, Sets of N-from-M, Counting-sorts AMC-23 - 2 LA-UR-18-20247

Outline

•  Random Permutations

•  Sampling N Items from a Set of M Items
–  With Replacement

–  Without Replacement

•  Reordering the Fission Bank, without Sorting

Permutations, Sets of N-from-M, Counting-sorts AMC-23 - 3 LA-UR-18-20247

Random
Permutations

Permutations, Sets of N-from-M, Counting-sorts AMC-23 - 4 LA-UR-18-20247

Random Permutations (1)

•  Problem: Generate a random permutation of a set of N items

–  N items: { x1, x2, x3, …, xN }

–  Want a a random ordering of the N items,  
without duplicate or missing entries

–  Examples: shuffling cards; random order for presentations; . . .

•  Basic algorithm

 for J = 1 .. N

 pick a random integer K in range [1,N]

 swap x(J) and x(K)

Permutations, Sets of N-from-M, Counting-sorts AMC-23 - 5 LA-UR-18-20247

Random Permutations (2)

Matlab C

long J, K, N;
double x[], xtmp;

for J = 1 : N for(J=0; J<N; J++) {

 % Random integer in range [1..N]
K = 1 + floor(N*rand); K =floor(N*rang());

 % Swap x(J) & x(K)
xtmp = x(J); xtmp = x[J];
x(J) = x(K); x[J] = x[K];

 x(K) = xtmp; x[K] = xtmp;

end }

Permutations, Sets of N-from-M, Counting-sorts AMC-23 - 6 LA-UR-18-20247

Sampling
N-from-M

Items

Permutations, Sets of N-from-M, Counting-sorts AMC-23 - 7 LA-UR-18-20247

Sampling N from M Items (1)

•  Problem: Given M items, randomly select N

•  For N ≤ M
–  If duplicates are allowed, called "sampling with replacement"
–  If duplicates are not allowed, called "sampling without replacement"

•  For N > M
–  Usually interpreted to mean:

(1) Make K copies of all M items, where K = floor(N / M)
(2) Sample the remainder (N - K*M) with or without replacement

Example: To sample 20 items from 6:
 Copy all 6 items 3 times each, 
 then sample 2 items from 6

•  While we may be picking from { x1, x2, x3, …, xN }, 
we only need consider the indices of selected items.
After picking the list of indices, gather the values.

Permutations, Sets of N-from-M, Counting-sorts AMC-23 - 8 LA-UR-18-20247

Sampling N from M Items (2)

•  Sampling "with" vs "without" replacement
–  Easy way to understand - picking Powerball numbers, by drawing

labeled balls from bucket (pick 5 from 69, then 1 from 26)
•  Sampling with replacement:  

pick a ball, record the number, then put it back in the bucket
•  Sampling without replacement:  

pick a ball, record the number, don't put it back in the bucket

•  Sampling with replacement could give: 5, 5, 5, 5, 5, 5
•  Sampling without replacement gives 5 unique numbers, then another.

–  Need sampling without replacement for picking Powerball numbers

•  This type of sampling occurs in criticality calculations,  
where N neutrons must be selected randomly from a  
fission-neutron-bank that contains M neutrons
–  We generally prefer to use sampling without replacement

Permutations, Sets of N-from-M, Counting-sorts AMC-23 - 9 LA-UR-18-20247

Sampling N from M Items, WITH REPLACEMENT (3)

•  Example
Given: M=5, { 1, 2, 3, 4, 5 }
Randomly select: N=3 items, with replacement

 integer, parameter :: M=5 ! Given items
 integer, parameter :: N=3 ! How many to select

 do J = 1, N

 K = 1 + M*rang() ! Random pick from 1..M

 keep(J) = K ! Save the pick

 enddo

Permutations, Sets of N-from-M, Counting-sorts AMC-23 - 10 LA-UR-18-20247

Sampling N from M Items (4)
•  Example

Given: M=5, { 1, 2, 3, 4, 5 }
Randomly select: N=3 items, without replacement

 integer, parameter :: M=5 ! Given items
 integer, parameter :: N=3 ! How many to select

 IX(1:M) = [1, 2, 3, 4, 5] ! List of items

 Mleft = M
 do J = 1, N
 K = 1 + Mleft*rang() ! Random pick from items left

 keep(J) = K ! Save the pick

 IX(K) = IX(Mleft) ! Replace pick by last item
 Mleft = Mleft - 1 ! Fix count of unpicked items
 enddo

Permutations, Sets of N-from-M, Counting-sorts AMC-23 - 11 LA-UR-18-20247

Sampling N from M Items (5)

•  Better algorithm - from Knuth, Volume 2, Section 3.4.2
•  Example

Given: M=5, { 1, 2, 3, 4, 5 }
Randomly select: N=3 items, without replacement

 integer, parameter :: M=5 ! Given items
 integer, parameter :: N=3 ! How many to select

 K = 0 ! # selected so far
 do J = 1, M ! Note: M, not N
 prob = real(N-K) / real(M-J+1) ! Prob of selecting
 if(rang() < prob) then
 K = K + 1
 keep(K) = J ! Save it

 if(K==N) exit
 endif
 enddo

Permutations, Sets of N-from-M, Counting-sorts AMC-23 - 12 LA-UR-18-20247

Sampling N from M Items (6)

•  Example - randomly pick numbers for Powerball

Use sampling without replacement to pick 5 from 69

Then pick 1 from 26

[As of 2015]

Notes:
–  Using the first algorithm for sampling without
replacement, the results are not ordered, so may get
[5, 1, 3, 2, 4, 6]

–  Using the Knuth algorithm, results are ordered, so would
get [1, 2, 3, 4, 5, 6]

Permutations, Sets of N-from-M, Counting-sorts AMC-23 - 13 LA-UR-18-20247

Sampling N from M Items - Mods

•  Modifications so that algorithm works for N<M, N=M, N>M
•  Example

Given: M=5, { 1, 2, 3, 4, 5 }
Randomly select: N=3 items, without replacement

 integer, parameter :: M=5 ! Given items
 integer, parameter :: N=3 ! How many to select

 K = 0 ! # selected so far
 do J = 1, M ! Note: M, not N
 prob = real(N-K) / real(M-J+1) ! Prob of selecting
 knt = prob + rang()
 do i=1,knt
 K = K + 1
 keep(K) = J ! Save it

 if(k==N) exit
 endif
 enddo

Permutations, Sets of N-from-M, Counting-sorts AMC-23 - 14 LA-UR-18-20247

Sampling N from M Weighted Items (W/O Replacement)

•  When the M items to be sampled (without replacement) each have
weights, only minor modifications are needed

•  Algorithm below works for N<M, N=M, N>M
•  Example

Given: M=5, { 1, 2, 3, 4, 5. }
W= { w1, w2, w3, w4, w5 }

Randomly select: N=3 items, without replacement

 integer, parameter :: M=5 ! Given items
 integer, parameter :: N=3 ! How many to select

 K = 0 ! # selected so far
 wtot = sum(W)
 wcum = 0 ! cumulative wgt, so far
 do J = 1, M ! Note: M, not N
 prob = w(J) * real(N-K) / (wtot-wcum) ! Prob of selecting
 wcum = wcum + w(J)
 knt = prob + rang()
 do i=1,knt
 K = K + 1
 keep(K) = J ! Save it
 if(K==N) exit
 enddo
 enddo

Permutations, Sets of N-from-M, Counting-sorts AMC-23 - 15 LA-UR-18-20247

Fission Bank
Reordering

Permutations, Sets of N-from-M, Counting-sorts AMC-23 - 16 LA-UR-18-20247

Fission Bank Reordering (1)

•  During criticality calculations, neutrons created by fission during
a cycle are added to the "fission bank", and held as sources for
the next cycle
–  Due to parallel processing (threading &/or MPI), the order of the

neutrons in the fission bank is not predictable
–  For reproducible results in criticality problems, the fission bank must

be reordered into a unique order prior to starting the next cycle
–  For definiteness, we choose to order the fission bank according to the

"particle number" nps. If there are more than 1 fission bank entries
with the same nps, retain the order of those.

•  Fission bank example – showing just nps, xyz
 original reordered
 3 xyz... 1 xyz...(a)
 1 xyz...(a) 1 xyz...(b)
 4 xyz... è 2 xyz...
 1 xyz...(b) 3 xyz...
 2 xyz 4 xyz...

Permutations, Sets of N-from-M, Counting-sorts AMC-23 - 17 LA-UR-18-20247

Fission Bank Reordering (2)

•  The fission bank reordering could be done by sorting, but that
would take O(N2) or O(N logN) time, and could be expensive

•  A counting sort algorithm is most efficient for reordering the
fission bank, O(N) timing
–  Sorts a collection of objects according to keys that are small integers
–  Applies only to sorting integers
–  Basic idea:

•  count the number of objects that have each distinct key value
•  use arithmetic on those counts to determine the positions of each key

value in the output sequence
–  Running time is linear in the number of items and the difference between the

maximum and minimum key values
–  Suitable for cases where the range of keys is not significantly greater than

the number of items

Permutations, Sets of N-from-M, Counting-sorts AMC-23 - 18 LA-UR-18-20247

Fission Bank Reordering (3)

•  Algorithm described next does the reordering in O(N) time, & is the method
used in the RACER & MCNP codes

 FB Brown & TM Sutton, "Reproducibility and Monte Carlo Eigenvalue
 Calculations", Trans Am Nuc Soc 65, 235 (1992)

Given initial vector of parent numbers in the bank, P(N)

L1 = 1
LJ+1 = LJ + count[PI == J], J = 1, ..., N

So that (LJ+1-LJ) = number of progeny in bank for parent J

Then permutation vector Q(N) for reordering P(N) is

for J=1,N
 QJ = LP(J)

 LP(J) = LP(J) + 1

Permutations, Sets of N-from-M, Counting-sorts AMC-23 - 19 LA-UR-18-20247

Fission Bank Reordering (4)
!===> find permutation vector for reordering an array in increasing order

n = length of ix() & perm()
ix(:) = integer vector, unchanged
perm(:) = perm vector for reordering ix()

 keymin = minval(ix(1:n)) ! minimum ix()
 keymax = maxval(ix(1:n)) ! maximum ix()
 nkeys = keymax - keymin + 1 ! size of vector to span range of ix()
 allocate(knt(nkeys))

 knt(1:nkeys) = 0
 do i=1,n
 key = ix(i) - keymin + 1
 knt(key) = knt(key) + 1 ! count the entries for each unique ix()
 enddo

 loc = 1
 do key=1,nkeys
 km = knt(key)
 knt(key) = loc ! convert to starting locs in permuted vect
 loc = loc + km
 enddo

 do i=1,n
 key = ix(i) - keymin + 1
 loc = knt(key) ! get loc for the permuted entry
 perm(loc) = i ! store index for permuted entry
 knt(key) = knt(key) + 1 ! bump the base loc, in case duplicates
 enddo
 deallocate(knt)

Permutations, Sets of N-from-M, Counting-sorts AMC-23 - 20 LA-UR-18-20247

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 2 4 6 8 10 12 14

neutrons/cycle (millions)

R
u

n
 T

im
e
 (

w
a
ll
-c

lo
c
k
 s

e
c
o

n
d

s
)

Fission Bank Reordering (5)

— Old MCNP, with fission-bank sorting
- - Sorting overhead time, quadratic

— New MCNP, no sorting, linear reordering

PWR2D Model

•  1/4-core, detailed

geometry, ENDF/B-VII

•  KCODE problem, first 5

cycles

•  Mac Pro, 3 GHz, 2
quad-core Xeon

•  Run with 8 threads

•  Times are wall-clock
seconds

•  Identical results for old
& new reordering

Timing Studies vs Fission Bank Size

Permutations, Sets of N-from-M, Counting-sorts AMC-23 - 21 LA-UR-18-20247

Fission Bank Reordering (6)

•  For older versions of mcnp
–  Fission bank reordering was done using a simple-minded bubble-sort,

that scaled as O(N2)
–  Timing was OK for 100s or 1000s of neutrons/cycle
–  For millions of neutrons/cyce, the time for reordering was longer than it

took to run the neutron histories !

•  For newer versions of mcnp (and racer)
–  Counting-sort, timing is O(N)

–  Time for reordering fission bank is not an issue

Note: Romano's papers compared his methods for treating the fission
 bank with the older mcnp schemes. Not valid for newer schemes.

Permutations, Sets of N-from-M, Counting-sorts AMC-23 - 22 LA-UR-18-20247

Permutations, Sets of N-from-M, Counting-sorts AMC-23 - 23 LA-UR-18-20247

Permutations, Sets of N-from-M, Counting-sorts AMC-23 - 24 LA-UR-18-20247

Some Ideas for a New Random Number Generator AMC-24 - 1 LA-UR-18-20247

Forrest B. Brown

National Laboratory Professor, UNM-NE
Senior R&D Scientist, Monte Carlo, LANL

Some Ideas for a New
Random Number Generator

Advanced
Computational

Methods for
Monte Carlo
Calculations

Some Ideas for a New Random Number Generator AMC-24 - 2 LA-UR-18-20247

Outline

•  MCNP RNG History

•  RNG Period & Modern Calculations

•  RN Usage & Reproducibility

•  Reminders

•  Detailed Review of RNG #2

•  MCGs & Different Adders

•  RNG #2 Correlation Study

•  Summary

Some Ideas for a New Random Number Generator AMC-24 - 3 LA-UR-18-20247

MCNP RNG History

•  Prior to 2002, MCNP used a 48-bit RNG

 48-bit LCG, period = 246 ~ 7.04 x 1013

 sk+1 = g·sk mod 248, with g = 519, s0 = odd

•  In 2002, MCNP5 introduced the current 64-bit RNG

 48-bit LCG, period = 246 ~ 7.04 x 1013 (default)

 sk+1 = g·sk mod 248, with g = 519, s0 = odd

 63-bit LCG, period = 261 ~ 2.31 x 1018 (32k longer than default)

 sk+1 = g·sk mod 263, with g = (3 choices), s0 = odd

 63-bit MCG, period = 263 ~ 9.22 x 1018 (128k longer than default)

 sk+1 = g·sk + c mod 263, with g = (3 choices), c = 1

•  For all, default stride = 152,917

LCG = linear congruential generator
MCG = mixed congruential generator

Some Ideas for a New Random Number Generator AMC-24 - 4 LA-UR-18-20247

RNG Period & Modern Calculations

•  With the default stride (152917), how many histories can be run
without exceeding the RNG period?
 48-bit LCG: ~ 4.60 x 108
 63-bit LCG: ~ 1.51 x 1013
 63-bit MCG: ~ 6.03 x 1013

•  For many applications, people are now routinely running 109-1010
histories, using threading &/or MPI

–  For a calculation with 1010 histories:

 using 48-bit LCG: cycle through entire RN sequence 21.7 times
 using 63-bit LCG: use only 6.6 % of RN sequence
 using 63-bit MCG: use only 1.7 % of RN sequence

–  It's time to consider changing the RNG default to extend the period,

and possibly to extend the stride as well

Some Ideas for a New Random Number Generator AMC-24 - 5 LA-UR-18-20247

RNG Usage & Reproducibility

•  A single RNG is used for all events within a history
–  Using mode n p gives different neutron results than using mode n
–  Adding a tally that involves cross-sections changes other results
–  Adding dxtran or a point-detector changes other results
–  Other examples

•  We could restore reproducibility by using different RNGs for
different classes of events
–  RNG-A for neutron tracking
–  RNG-B for cross-sections (eg, URR)
–  RNG-C for photons
–  RNG-D for dxtran
–  RNG-E for point-detectors
–  etc.

–  Where would we get all of these independent RNGs ?

Some Ideas for a New Random Number Generator AMC-24 - 6 LA-UR-18-20247

Reminders

•  The RNG for MCNP has a number of requirements
–  Small state size
–  Solid number-theory basis
–  Fast
–  Fast skip-ahead algorithm (required for parallel)
–  Robust
–  Thoroughly tested (by us)

•  At present, there are no reasons to abandon the MCG approach
–  Would require more than 6 months for R&D and testing
–  Current MCG can handle 6 x 1013 histories without repetition

•  The current MCG is readily extensible to provide different RN
sequences for different classes of events

Some Ideas for a New Random Number Generator AMC-24 - 7 LA-UR-18-20247

Detailed Review of MCNP RNG #2

•  MCNP RNG #2
 sk+1 = g·sk + c mod 263

 g = multiplier = 9219741426499971445
 c = adder = 1

 integer bits = 63
 modulus = 263
 period = 2**63 = 9.2234E+18
 stride = 152917
 largest RN = 9.999999999999998890E-01
 smallest RN = 1.110223024625156540E-16

–  Knuth checks on multiplier, modulus, & adder – OK
 For MCG: (1) c is coprime with modulus
 (2) (g-1) is multiple of every prime factor of modulus
 (3) (g-1) is multiple of 4 if modulus is multiple of 4

–  Excellent results on spectral test (hyperplane spacing)

–  Passes all statistical tests in DIEHARD, L'Ecuyer, Vattulainen,
 & Mascagni test suites

Some Ideas for a New Random Number Generator AMC-24 - 8 LA-UR-18-20247

Detailed Review of MCNP RNG #2

•  L'Ecuyer asserted that RNG #2 had excellent results for the spectral test

•  My testing results:

 RN Generator 2 g=9219741426499971445, c=1, m=63

t=2 mu(t)=2.85089031774985996530 S1(t)=.88650386627857186441
t=3 mu(t)=2.80455905390264406911 S1(t)=.77938790282751717292
t=4 mu(t)=3.57264878020696490964 S1(t)=.77566223017859449159
t=5 mu(t)=3.83795429041141295503 S1(t)=.76252004748034724096
t=6 mu(t)=3.82954881918753935792 S1(t)=.73714566150742348291
t=7 mu(t)=6.42411095559202805217 S1(t)=.77633463775048459411
t=8 mu(t)=6.81135485905833985083 S1(t)=.75438085713451985058

***** PASSED - EXCELLENT *****

For comparison, the mcnp default RNG gives these spectral test results:

 RN Generator 1 g=19073486328125, c=0, m=48

t=2 mu(t)=3.02330351881511771611 S1(t)=.91291691559340599922
t=3 mu(t)=.19696317112830573650 S1(t)=.32155885499949565800
t=4 mu(t)=1.88704849748587688769 S1(t)=.66125783229413364207
t=5 mu(t)=.94833720772801102363 S1(t)=.57653259365188430775
t=6 mu(t)=1.85974307624174089346 S1(t)=.65353803883396297387
t=7 mu(t)=.88018197696895914615 S1(t)=.58442513153953261525
t=8 mu(t)=1.29313543514425238928 S1(t)=.61290331823653343011

***** PASSED *****

Knuth criteria, for 2 ≤ t ≤6
 𝜇t > 1 excellent, pass
 0.1 ≤ 𝜇t ≤ 1 pass
 𝜇t ≤ 1 fail
 For St, closer to 1.0 is better

Some Ideas for a New Random Number Generator AMC-24 - 9 LA-UR-18-20247

MCGs & Different Adders

•  MCG: sk+1 = g·sk + c mod 263

•  If Knuth's criteria for g, c, & modulus hold,
the statistical properies of an MCG do not depend on the adder c
–  Spectral test is independent of the adder c

–  Using MCGs with the same multiplier & modulus, but different adders, will
produce different RN sequences. They all have the identical statistical properties
& pass the same statistical tests

•  Regarding MCNP RNG #2:
–  All of these provide independent RN sequences,

with identical statistical properties:
 sk+1 = g·sk + 1 mod 263 excellent
 sk+1 = g·sk + 3 mod 263 excellent
 sk+1 = g·sk + 5 mod 263 excellent

 sk+1 = g·sk + 7 mod 263 excellent

Adder c must be chosen
such that GCD(c,263) = 1,

c can be any odd number

Some Ideas for a New Random Number Generator AMC-24 - 10 LA-UR-18-20247

RNG #2 – Correlation Study

•  Using RNG #2 with different adders
–  Same statistical properties
–  Is there any correlation in the RN sequences if different adders are

used? NO

•  Test results on next pages
 For adders = [1, 3, 5, 7, 9, 11, 13, 15, 17]

 For 10,000 particles & stride 152917

 Generate all RNs (within stride) for a particle & adder

 Then,
 Compute correlation coef's for lags [0,...,8] for given particle & adder
 Compute cross-correlation for lags [0,...,8] between different adders

 Average the correlations & cross-correlations over all particles
 Also get min & max correlations & cross-correlactions for single particle

13.76 billion RNs in all, easy to do more

Some Ideas for a New Random Number Generator AMC-24 - 11 LA-UR-18-20247

RNG #2 – Correlation Study

=====> mcnp random number generator #2

 multiplier = 9219741426499971445

 adder = 1

 integer bits = 63

 modulus = 2**63

 period = 2**63 = 9.2234E+18

 stride = 152917

 largest RN = 9.999999999999998890E-01

 smallest RN = 1.110223024625156540E-16

 Knuth check on multiplier, modulus, & adder – OK

=====> generate adder list for opt= 1
 adder 0 = 1 0001
 adder 1 = 3 0011
 adder 2 = 5 000101
 adder 3 = 7 000111
 adder 4 = 9 001001
 adder 5 = 11 001011
 adder 6 = 13 001101
 adder 7 = 15 001111
 adder 8 = 17 00010001

***** All results that follow obtained using all *****
***** of the Rns in the stride for each particle *****

Some Ideas for a New Random Number Generator AMC-24 - 12 LA-UR-18-20247

RNG #2 – Correlation Study

-----> correlation coefficients, AVERAGE for nps = 1, ..., 10000
 RNG lag= 0 1 2 3 4 5 6 7 8
 0 1.0000 -0.0000 -0.0000 0.0000 0.0000 -0.0000 -0.0000 -0.0000 -0.0000
 1 1.0000 -0.0000 0.0000 0.0000 -0.0000 -0.0001 0.0000 -0.0001 -0.0000
 2 1.0000 -0.0000 0.0000 0.0000 0.0000 -0.0000 -0.0000 -0.0000 -0.0000
 3 1.0000 -0.0000 -0.0000 0.0000 -0.0000 0.0000 -0.0001 -0.0000 -0.0000
 4 1.0000 0.0000 0.0000 0.0000 -0.0000 -0.0001 -0.0000 -0.0000 0.0000
 5 1.0000 -0.0000 0.0000 0.0000 -0.0000 -0.0000 0.0000 0.0000 -0.0000
 6 1.0000 -0.0000 -0.0001 -0.0000 0.0000 -0.0000 -0.0001 -0.0000 0.0000
 7 1.0000 0.0001 -0.0000 0.0000 -0.0000 0.0000 0.0000 0.0000 0.0000
 8 1.0000 -0.0000 0.0000 0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000

-----> cross-correlation, AVERAGE for nps = 1, ..., 10000
 RNG lag= 0 1 2 3 4 5 6 7 8
 0-0 1.0000 -0.0000 -0.0000 0.0000 0.0000 -0.0000 -0.0000 -0.0000 -0.0000
 0-1 0.0000 0.0000 -0.0001 0.0000 0.0000 0.0000 0.0000 -0.0000 -0.0000
 0-2 -0.0000 -0.0000 0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 0.0000
 0-3 0.0000 -0.0000 -0.0000 -0.0000 -0.0001 -0.0000 0.0000 -0.0000 -0.0000
 0-4 -0.0000 -0.0000 0.0000 0.0000 -0.0000 0.0000 -0.0000 -0.0000 -0.0000
 0-5 -0.0001 0.0001 -0.0000 0.0000 -0.0000 -0.0000 0.0000 -0.0000 -0.0000
 0-6 0.0000 0.0000 0.0000 0.0000 -0.0000 0.0000 -0.0000 0.0000 -0.0000
 0-7 -0.0000 -0.0001 -0.0000 0.0001 -0.0000 0.0001 -0.0000 -0.0000 0.0000
 0-8 -0.0000 0.0000 0.0000 -0.0000 -0.0000 -0.0000 -0.0000 0.0000 -0.0000

Some Ideas for a New Random Number Generator AMC-24 - 13 LA-UR-18-20247

RNG #2 – Correlation Study

-----> correlation coefficients, MAX for nps = 1, ..., 10000
 RNG lag= 0 1 2 3 4 5 6 7 8
 0 1.0000 0.0104 0.0112 0.0105 0.0095 0.0095 0.0097 0.0104 0.0095
 1 1.0000 0.0111 0.0097 0.0095 0.0112 0.0098 0.0098 0.0092 0.0099
 2 1.0000 0.0093 0.0098 0.0102 0.0098 0.0101 0.0111 0.0083 0.0097
 3 1.0000 0.0103 0.0093 0.0094 0.0093 0.0104 0.0099 0.0107 0.0088
 4 1.0000 0.0099 0.0105 0.0098 0.0087 0.0099 0.0094 0.0103 0.0103
 5 1.0000 0.0087 0.0101 0.0091 0.0096 0.0096 0.0095 0.0109 0.0086
 6 1.0000 0.0100 0.0096 0.0096 0.0106 0.0111 0.0100 0.0093 0.0095
 7 1.0000 0.0100 0.0086 0.0096 0.0100 0.0106 0.0102 0.0092 0.0102
 8 1.0000 0.0095 0.0104 0.0107 0.0092 0.0089 0.0093 0.0117 0.0100

-----> correlation coefficients, MIN for nps = 1, ..., 10000
 RNG lag= 0 1 2 3 4 5 6 7 8
 0 1.0000 -0.0093 -0.0096 -0.0097 -0.0112 -0.0094 -0.0092 -0.0097 -0.0113
 1 1.0000 -0.0102 -0.0106 -0.0103 -0.0098 -0.0099 -0.0100 -0.0108 -0.0098
 2 1.0000 -0.0113 -0.0105 -0.0084 -0.0094 -0.0098 -0.0105 -0.0096 -0.0106
 3 1.0000 -0.0089 -0.0088 -0.0100 -0.0106 -0.0092 -0.0109 -0.0101 -0.0096
 4 1.0000 -0.0100 -0.0089 -0.0097 -0.0118 -0.0100 -0.0095 -0.0104 -0.0097
 5 1.0000 -0.0101 -0.0093 -0.0112 -0.0093 -0.0097 -0.0103 -0.0093 -0.0099
 6 1.0000 -0.0097 -0.0098 -0.0100 -0.0093 -0.0098 -0.0089 -0.0087 -0.0103
 7 1.0000 -0.0091 -0.0113 -0.0099 -0.0099 -0.0103 -0.0099 -0.0087 -0.0088
 8 1.0000 -0.0093 -0.0100 -0.0116 -0.0094 -0.0111 -0.0096 -0.0093 -0.0105

Some Ideas for a New Random Number Generator AMC-24 - 14 LA-UR-18-20247

RNG #2 – Correlation Study

-----> cross-correlation, MAX for nps = 1, ..., 10000
 RNG lag= 0 1 2 3 4 5 6 7 8
 0-0 1.0000 0.0104 0.0112 0.0105 0.0095 0.0095 0.0097 0.0104 0.0095
 0-1 0.0104 0.0091 0.0112 0.0102 0.0096 0.0100 0.0103 0.0089 0.0102
 0-2 0.0123 0.0109 0.0109 0.0094 0.0102 0.0103 0.0091 0.0101 0.0102
 0-3 0.0101 0.0094 0.0108 0.0089 0.0103 0.0088 0.0093 0.0107 0.0097
 0-4 0.0099 0.0116 0.0107 0.0087 0.0107 0.0088 0.0095 0.0099 0.0096
 0-5 0.0101 0.0093 0.0092 0.0102 0.0100 0.0096 0.0098 0.0096 0.0088
 0-6 0.0091 0.0097 0.0105 0.0099 0.0108 0.0113 0.0095 0.0098 0.0104
 0-7 0.0094 0.0095 0.0099 0.0098 0.0090 0.0094 0.0094 0.0091 0.0112
 0-8 0.0094 0.0098 0.0107 0.0090 0.0097 0.0092 0.0088 0.0106 0.0122

-----> cross-correlation, MIN for nps = 1, ..., 10000
 RNG lag= 0 1 2 3 4 5 6 7 8
 0-0 1.0000 -0.0093 -0.0096 -0.0097 -0.0112 -0.0094 -0.0092 -0.0097 -0.0113
 0-1 -0.0089 -0.0089 -0.0103 -0.0099 -0.0089 -0.0091 -0.0100 -0.0113 -0.0095
 0-2 -0.0090 -0.0111 -0.0091 -0.0106 -0.0090 -0.0106 -0.0096 -0.0097 -0.0109
 0-3 -0.0098 -0.0104 -0.0094 -0.0095 -0.0090 -0.0118 -0.0095 -0.0101 -0.0113
 0-4 -0.0099 -0.0098 -0.0095 -0.0094 -0.0094 -0.0102 -0.0106 -0.0089 -0.0119
 0-5 -0.0101 -0.0100 -0.0092 -0.0083 -0.0111 -0.0094 -0.0107 -0.0100 -0.0098
 0-6 -0.0092 -0.0095 -0.0094 -0.0109 -0.0089 -0.0097 -0.0092 -0.0091 -0.0087
 0-7 -0.0090 -0.0095 -0.0103 -0.0103 -0.0093 -0.0100 -0.0096 -0.0096 -0.0094
 0-8 -0.0105 -0.0095 -0.0091 -0.0090 -0.0124 -0.0099 -0.0127 -0.0100 -0.0088

Some Ideas for a New Random Number Generator AMC-24 - 15 LA-UR-18-20247

Summary

•  The current MCNP RNG can handle up to 6 x 1013 histories without
repetition using RNG #2, #3, or #4

•  RNG #2 has excellent statistical properties, in fact better than the
traditional 48-bit default generator

•  Using different adders, RNG #2 could be used to provide different,
independent RN sequences for different classes of events in the
MC simulation, possibly resolving reproducibility problems

•  Thorough examination & testing of RNG #2 demonstrates that
using different adders does not introduce correlation.
–  Different adders could be used for different particle types
–  Different adders could be used for sources, tracking, tallies, etc.

Some Ideas for a New Random Number Generator AMC-24 - 16 LA-UR-18-20247

MC Codes – Algorithms & Structure AMC-30 - 1LA-UR-18-20247

Forrest B. Brown

National Laboratory Professor, UNM-NE
Senior R&D Scientist, Monte Carlo, LANL

Monte Carlo Codes –
Basic Structure & Algorithm

Advanced
Computational

Methods for
Monte Carlo
Calculations

MC Codes – Algorithms & Structure AMC-30 - 2LA-UR-18-20247

Outline

• Perspective

• Building a Monte Carlo Code

– Basic building blocks

– Testing

– Data Structures

– Overall code organization

– Random walk for a history

MC Codes – Algorithms & Structure AMC-30 - 3LA-UR-18-20247

Perspective

• The lectures on computing & Monte Carlo codes are intended for
both future code developers and code users

• For future code developers
– Follow these guidelines until you’re good enough to make your own
– Throw out your “Numerical Recipes” book - look at real codes & the

literature
– Learn both Fortran & C, and perl & python & bash scripting

• For code users
– A general idea of what the codes do & why helps in deciphering input

manuals & output results
– Need to be good at using editor & shell windows & command line, not

just point-and-click GUIs
– Never just accept the MC results - always question whether results are

reasonable & what you expect

MC Codes – Algorithms & Structure AMC-30 - 4LA-UR-18-20247

Building a
Monte Carlo Code

MC Codes – Algorithms & Structure AMC-30 - 5LA-UR-18-20247

Basic building blocks

• Random number generator
– Use a known, well-tested RNG - MCNP routines

• Random sampling routines
– See my notes, Devroye's book, Kahn's report, 3rd MC Sampler, …

• Geometry routines - locate, distance, neighbors, boundary
– For mesh geometry & very simple 3D, can do it yourself
– For general 3D, this is a career - borrow from real codes

• Physics routines - access, search, interpolate, sample
– For 1-group or multigroup, do it yourself
– For general continuous-energy, borrow from real codes

• Tally & statistics routines
– Usually straightforward, but review your statistics

MC Codes – Algorithms & Structure AMC-30 - 6LA-UR-18-20247

Testing a Monte Carlo Code

• Basic building blocks must be tested separately,
before putting into larger code
– RN generator
– Random sampling routines
– Distance calculations
– Table search routines
– Interpolation routines

• Whole code must be tested on as many problems as possible
where correct answers are known
– Analytical problems, with exact solutions
– Experiments, with measured results

• Be wary of experiment error bars & model uncertainties
• Calculate many experiments, never just one

MC Codes – Algorithms & Structure AMC-30 - 7LA-UR-18-20247

General Guidelines

• For any scientific & engineering programs,
always use “double-precision” for real numbers

Fortran: real(8) x
C/C++: double x;
Matlab: (default is double)

• Data types should be explicit for constants
Fortran: pi = 3.14159265358979d+0

not pi = 3.14159265358979

• Integer lengths - 32-bit vs 64-bit
Fortran: integer id integer(8):: id integer(8):: id
C/C++: int id; long id; long long id;

Usually, Fortran integer & C int limited to: ≤ 2,147,483,647
OK for simple demo codes; production codes usually need bigger ints

Matlab: uses real(8)

MC Codes – Algorithms & Structure AMC-30 - 8LA-UR-18-20247

Data Structures (1)

• Particle - minimum attribute set
struct particle {

long long id; // particle identifier number
double x,y,z; // position
double u,v,w; // direction cosines, u2 + v2 + w2 = 1
double e; // energy (or group number, integer)
double wgt; // weight
long long seed; // RN seed - most codes don't do this!

}

• For convenience & speed, often include derived info:
long cell; // current cell number
double dcol; // distance to collision
double dsur; // distance to cell boundary surface
long jsur; // number/label of boundary surface
long ix,jx,kx; // lattice cell index numbers
…..

MC Codes – Algorithms & Structure AMC-30 - 9LA-UR-18-20247

Data Structures (2)

• Multigroup Cross-sections
– Vectors of σ’s
– Matrix of group-to-group scatter
– Group 1 - highest energy range

• Continuous-energy Cross-sections
– Complex format, 68 page description in MCNP Manual Vol-III

– Microscopic σ’s given as ladder of (Ek, σk) pairs or sets
• σk is the cross-section at energy Ek
• For Ek < E < Ek+1, linear interpolation [sometimes lin-log, log-lin, log-log]

– Data for scattering laws has varied, complex formats

σt σs σa 𝛎σf G
roup g

’
à

G
roup à

Group g à

σg àg’

f = E − Ek

Ek+1 − Ek

σ t (E) = (1− f) ⋅σ t ,k + f ⋅σ t ,k+1

MC Codes – Algorithms & Structure AMC-30 - 10LA-UR-18-20247

Overall Code Organization

Initialize problem
� read input, or hard-wired setup - geom, xsecs, options
� clear tally arrays for problem
� set RN seed for problem

Do n=1, nhistories

Initialize history
� clear tally arrays for history
� set RN seed for history

Source for history n
� set x,y,z, u,v,w, E, wgt, cell

Random walk for history n
� geometry, physics, tallies for history

Statistics
� add history tallies & tallies2 to problem tallies

end-of-history-loop

Compute overall results & statistics

MC Codes – Algorithms & Structure AMC-30 - 11LA-UR-18-20247

Random Walk for a History

Source - set x,y,z, u,v,w, E, wgt, cell

Do while wgt > 0
� get material number & xsec data
� dist_collision from random sampling
� dist_boundary from distance routines

dist = min(dist_collision, dist_boundary)
(x,y,z) = (x,y,z) + dist * (u,v,w)
� make pathlength tallies

if(dist_collision < dist_boundary)
� collision physics, get new u,v,w, E, wgt
� make collision tallies
� if particle terminated, exit loop

else
� boundary routine
� find neighbor cell
� make surface tallies
� if particle escapes, exit loop

� Russian roulette & splitting games
end-of-flight/collision-loop

MC Codes – Algorithms & Structure AMC-30 - 12LA-UR-18-20247

Code Development – How to Time & Test AMC-31 - 1LA-UR-18-20247

Forrest B. Brown

National Laboratory Professor, UNM-NE
Senior R&D Scientist, Monte Carlo, LANL

Code Development –
How to Time & Test

Advanced
Computational

Methods for
Monte Carlo
Calculations

Code Development – How to Time & Test AMC-31 - 2LA-UR-18-20247

Introduction

• For a production-level code

– Correct results is #1
• Compare code results to experiments or analytic solutions
• Document the verification/validation results

– Run-time is #2
• If calculations take too long, users might not do them or might take

undesirable shortcuts...
• On today's computers, parallelism is required for decent performance

• For developing new algorithms, methods, & numerical schemes

– Generally done stand-alone, separate from large production code

– Developers need to test & time the old vs new approaches

– Impact on production code runtime depends on how often the new
coding is used, and also on the applications

Code Development – How to Time & Test AMC-31 - 3LA-UR-18-20247

Timing

Code Development – How to Time & Test AMC-31 - 4LA-UR-18-20247

How to Time

• Small sections of coding may take 𝝻sec or nsec

– For such short times, system timing routines are not reliable for a
single execution of the coding

– Need to take an average execution time for many runs
• May need 1000s or Ms of repetitions for reliable timing
• Subtract the overhead for repeating the test
• Need to vary the inputs for the tests, perhaps randomly

– For threaded coding
• Timing should be in terms of wall-clock time, not cpu-time

– For single-thread coding
• Either cpu-time or wall-time is fine
• cpu-time is easier
• In MC, threading is by history, so any coding acting on only 1 history

(particle) should be timed for a single thread

Code Development – How to Time & Test AMC-31 - 5LA-UR-18-20247

Fortran 2003 CPU Timing

call cpu_time (t)

To measure cpu time:

real(8) :: t, t1, t2

call cpu_time(t1)

do k=1,nrepeat

.....code being timed

enddo

call cpu_time(t2)

!===> time/trial

t = (t2 – t1)/nrepeat - t_overhead

Code Development – How to Time & Test AMC-31 - 6LA-UR-18-20247

Fortran 2003 Wall-clock Timing

call system_clock(COUNT= count, COUNT_RATE= crate, COUNT_MAX= cmax)

count, crate, cmax: integers with the same KIND attribute

To measure elapsed wall-clock time:

integer(8) :: count1, count2, crate, cmax

call system_clock(COUNT=count1)

.....code being timed

call system_clock(COUNT=count2, &

& COUNT_RATE=crate, COUNT_MAX=cmax)

t = (count2-count1) / real(crate,8)

! in case count rolls over:

if(t<0) t = t + cmax/real(crate,8)

Note for Intel Fortran-17, Macos 10.12 :
• Using integer(4): cmax/crate ~ 2.5 days, max interval
• Using integer(8): cmax/crate ~ 300K years, max interval

Code Development – How to Time & Test AMC-31 - 7LA-UR-18-20247

Timing Example

nrepeat = 1000000 <--- should be large,
so total time is > a few seconds

!===> get overhead per trial
call cpu_time(t1)
s = 0
do j=1,nrepeat

s = s + rang() <--- include overhead, & some extra
enddo (cheap) op so that compiler has
call cpu_time(t2) to do something & can't optimize
t_overhead = (t2-t1) / nrepeat everything away

!===> timing for binary search
call cpu_time(t1)
do j=1,nrepeat

r = rang()
k = bsearch(npts, cdf, r)

enddo
call cpu_time(t2)
t = (t2-t1)/nrepeat - t_overhead

write(*,*) "bsearch:", t, "sec/trial"

Code Development – How to Time & Test AMC-31 - 8LA-UR-18-20247

Timing & Scaling

• For many algorithms, the time/trial depends on the size of a
dataset
– Table searches
– Permutations
– Reordering data
– Sampling from a discrete PDF

• Timing tests need to be performed with different dataset sizes

– The "best" algorithm for small datasets may be bad for large datasets

– Plots of (time/trial) vs (dataset size) are especially useful to identify
which algorithms are best for a range of likely dataset sizes

Code Development – How to Time & Test AMC-31 - 9LA-UR-18-20247

Timing Example – with Scaling

nrepeat = 1000000

!===> get timing overhead/trial
call cpu_time(t1)
s = 0
do j=1,nrepeat
s = s + rang()

enddo
call cpu_time(t2)
t_overhead = (t2-t1) / nrepeat

!===> timing for various table sizes
n_ndata = 10
ndata = [2, 4, 8, 16, 32, &
& 64, 128, 256, 512, 1024]

do k=1,n_ndata
n = ndata(k)
write(*,*) "Test tablesize =",n
call make_data(n, x, pdf, cdf)

call time_bsearch(nrepeat, n, &
& cdf, t_overhead)

enddo

subroutine time_bsearch(nrep,npts,cdf,tover)
integer,intent(in) :: nrepeat, npts
real(8),intent(in) :: cdf(:), tover
integer :: j,k
real(8) :: r, t, t1, t2
!===> timing for binary search
call cpu_time(t1)
do j=1,nrep

r = rang()
k = bsearch(npts, cdf, r)

enddo
call cpu_time(t2)
t = (t2-t1)/nrep - tover
write(*,*) "bsearch:", t, "sec/trial"

end subroutine time_bsearch

subroutine make_data(n, x, pdf, cdf)
!===> randomly create piecewise linear PDF
integer,intent(in) :: n
real(8),intent(out) :: x(:), pdf(:), cdf(:)
integer :: k
do k=1,n

x(k) = k
pdf(k) = rang()

enddo
cdf(1) = 0.0
do k=2,n

x1=x(k-1); x2=x(k);
p1=pdf(k-1); p2=pdf(k)
cdf(k) = cdf(k-1) + 0.5*(p2+p1)*(x2-x1)

enddo
pdf(1:n) = pdf(1:n) / cdf(n)
cdf(1:n) = cdf(1:n) / cdf(n)

end subroutine make_data

Code Development – How to Time & Test AMC-31 - 10LA-UR-18-20247

Timing Example – 6 Variations on Table Searches

• For randomly generated PDFs & randomly sampled targets
• Lookup time (nanosec) vs number of bins:

N	bins	= 2 4 8 16 32 64 128 256 512 1024

Linear 6.0 9.2 11.7 13.4 18.2 25.2 40.4 72.4 139.4 270.7

Binary 1.6 2.6 4.3 6.7 9.3 11.6 14.6 18.0 21.5 24.9

Binary,	shift 1.4 2.2 3.5 5.4 7.3 9.2 12.2 14.1 15.7 19.0

Binary,	shift,	merge 1.4 2.2 3.5 5.3 7.6 9.4 12.4 14.4 16.2 19.1

Binary,	goto 1.3 2.2 3.4 5.6 7.3 9.2 12.2 14.1 15.7 19.1

Binary,	no	if-tests 2.6 3.6 5.0 6.6 8.2 9.8 11.7 13.8 15.7 17.9

MacBook Pro
3.5 GHz I7
2.1 Ghz LPDDR3

0

100

200

300

0 200 400 600 800 1000

Linear
Binary

Code Development – How to Time & Test AMC-31 - 11LA-UR-18-20247

Testing

Code Development – How to Time & Test AMC-31 - 12LA-UR-18-20247

Introduction

• General ways to test new algorithms

– Compare 2 or 3 different approaches
• For searching, may want to compare results using linear & binary searches
• For sampling, may want to compare rejection & direct, old vs new,

– For random sampling algorithms, common approaches are
• Use very many histogram bins (1000s) for sampled results, compare to

original PDF on same bin structure
• Compute moments of sampled results & compare to analytic moments

m1 = sum(xi)/N, m2 = sum(xi
2)/n, etc.

– Need to repeat the sampling or searching algorithm very, very many
times, varying the tables or probabilities, both size & shape
• Sometimes, need to pay particular attention to end-cases

Code Development – How to Time & Test AMC-31 - 13LA-UR-18-20247

Example – Searching

• Compare different methods & check
nrepeat = 10000000

!===> pick different table sizes
n_ntable = 10
ntable = [2, 4, 8, 16, 32, 63, 64, 65, 128, 256]

do k=1,n_ntable
n = ntable(k)

do k=1,nrepeat
!---> generate a random PDF
call make_random_pdf(n, pdf)

!---> search different ways (with same RN)
r = rang()
i = linear_search(n,cdf, r)
j = binary_search(n,cdf, r)

!---> check
if(i /= j) stop ‘***** error 1 *****’
if(r < pdf(i)) stop ‘***** error 2 *****’
if(r > pdf(i+1)) stop ‘***** error 2 *****’

enddo
enddo

Code Development – How to Time & Test AMC-31 - 14LA-UR-18-20247

Example – Sampling, Histogram Bins

• Histogram binning
nbins = 1000
xmax = ... Max value for range
xmin = ... Min value for range

!---> fill reference array with exact pdf at bin midpoints
call fill_with_exact_pdf(nbins, x_exact)

nrepeat = 1000000
!---> repeated sampling (may have outer loop for parameters)
do k=1,nrepeat

x = sample_pdf()

bin = 1 + nbins*(x-xmin)/(xmax-xmin)
x_sample(bin) = x_sample(bin) + 1

enddo
x_sample = x_sample / nrepeat

!---> compare x_exact(:) to x_sample(:) ...

Code Development – How to Time & Test AMC-31 - 15LA-UR-18-20247

Example – Sampling, Moments

• Compute moments of exact PDF & sampled PDF
nmom = 10

!---> fill reference array with mements of exact pdf
call fill_with_exact_moments(nmom, moments_exact)

nrepeat = 1000000
!---> repeated sampling (may have outer loop for parameters)
do k=1,nrepeat

x = sample_pdf()
!---> compute sample moments
do j=1,nmom

moments_sample(j) = moments_sample(j) + x**j
enddo

enddo
moments_sample = moments_sample / nrepeat

!---> compare moments_exact(:) to moments_sample(:) ...

Code Development – How to Time & Test AMC-31 - 16LA-UR-18-20247

Assessing Test Results

• Plots of exact vs sampled results

• Compute goodness-of-fit parameters
– RMS difference, max difference, etc.
– Could compute statistics on sampled results

• For moment checking
– Could compute statistics on sampled moments
– RMS differences, etc.

• For modern unit-testing, need to decide on definite pass/fail
criteria

Code Development – How to Time & Test AMC-31 - 17LA-UR-18-20247

Final Comments

• Timing & testing takes a lot of time & effort
– Sometimes more time than the algorithm development
– It's work, not fun
– Necessary – if not done, the new method or algorithm is worthless

• Documenting the work
– Modern code development practices

• Software Quality Assurance (SQA)
• Rigorous SQA is required by many professional standards
• Must document

– Basis for method (ie, theory, algorithm, ...)
– Testing results
– Timing/scaling results not required (but should be)
– Independent review

– It's work, not fun
– Necessary – if not done, the new method or algorithm is worthless

• By today's standards, if code development is not documented,
tested, & reviewed, it won't be used

Code Development – How to Time & Test AMC-31 - 18LA-UR-18-20247

Code Development – How to Time & Test AMC-31 - 19LA-UR-18-20247

Code Development – How to Time & Test AMC-31 - 20LA-UR-18-20247

Vector & Parallel Monte Carlo AMC-32 - 1LA-UR-18-20247

Forrest B. Brown

National Laboratory Professor, UNM-NE
Senior R&D Scientist, Monte Carlo, LANL

Vector & Parallel
Monte Carlo

Advanced
Computational

Methods for
Monte Carlo
Calculations

From: F.B. Brown & T.M. Sutton, "Monte Carlo Fundamentals", KAPL-4823, 1996

Vector & Parallel Monte Carlo AMC-32 - 2LA-UR-18-20247

Introduction

Vector & Parallel Monte Carlo AMC-32 - 3LA-UR-18-20247

Vector Processing

Vector & Parallel Monte Carlo AMC-32 - 4LA-UR-18-20247

Vector Processing

Vector & Parallel Monte Carlo AMC-32 - 5LA-UR-18-20247

Vector Processing

Vector & Parallel Monte Carlo AMC-32 - 6LA-UR-18-20247

Vector Processing

Vector & Parallel Monte Carlo AMC-32 - 7LA-UR-18-20247

Vector Processing

Vector & Parallel Monte Carlo AMC-32 - 8LA-UR-18-20247

Vector Processing

Vector & Parallel Monte Carlo AMC-32 - 9LA-UR-18-20247

Vectorization

Vector & Parallel Monte Carlo AMC-32 - 10LA-UR-18-20247

Vectorization

Vector & Parallel Monte Carlo AMC-32 - 11LA-UR-18-20247

Vectorization

Vector & Parallel Monte Carlo AMC-32 - 12LA-UR-18-20247

Vectorization

Vector & Parallel Monte Carlo AMC-32 - 13LA-UR-18-20247

Event-Driven Algorithm

Vector & Parallel Monte Carlo AMC-32 - 14LA-UR-18-20247

Event-Driven Algorithm

Vector & Parallel Monte Carlo AMC-32 - 15LA-UR-18-20247

Event-Driven Algorithm

Vector & Parallel Monte Carlo AMC-32 - 16LA-UR-18-20247

Event-Driven Algorithm

Vector & Parallel Monte Carlo AMC-32 - 17LA-UR-18-20247

Event-Driven Algorithm

Vector & Parallel Monte Carlo AMC-32 - 18LA-UR-18-20247

Vectorization

Vector & Parallel Monte Carlo AMC-32 - 19LA-UR-18-20247

Parallel Processing

Vector & Parallel Monte Carlo AMC-32 - 20LA-UR-18-20247

Parallel Processing

Vector & Parallel Monte Carlo AMC-32 - 21LA-UR-18-20247

Parallel Processing

Vector & Parallel Monte Carlo AMC-32 - 22LA-UR-18-20247

Performance

Vector & Parallel Monte Carlo AMC-32 - 23LA-UR-18-20247

Issues

Vector & Parallel Monte Carlo AMC-32 - 24LA-UR-18-20247

Monte Carlo Algorithms: Vector & Parallel

Vector & Parallel Monte Carlo AMC-32 - 25LA-UR-18-20247

Hierarchical Parallelism

Vector & Parallel Monte Carlo AMC-32 - 26LA-UR-18-20247

Parallel MC Algorithms – Alternatives for Shared-Memory

Vector & Parallel Monte Carlo AMC-32 - 27LA-UR-18-20247

Parallel MC Algorithms – Distributed Memory & Clusters

Vector & Parallel Monte Carlo AMC-32 - 28LA-UR-18-20247

Parallel MC – Speedup & Scaling

Vector & Parallel Monte Carlo AMC-32 - 29LA-UR-18-20247

Parallel Speedup & Scaling

Vector & Parallel Monte Carlo AMC-32 - 30LA-UR-18-20247

Advanced Computers

Vector & Parallel Monte Carlo AMC-32 - 31LA-UR-18-20247

Parallel Speedup & Scaling

Vector & Parallel Monte Carlo AMC-32 - 32LA-UR-18-20247

Parallel Speedup & Scaling – Eigenvalue Problems

Vector & Parallel Monte Carlo AMC-32 - 33LA-UR-18-20247

Parallel Speedup & Scaling

Vector & Parallel Monte Carlo AMC-32 - 34LA-UR-18-20247

Parallel Speedup & Scaling

Vector & Parallel Monte Carlo AMC-32 - 35LA-UR-18-20247

Scaling - Limits & Metrics

Vector & Parallel Monte Carlo AMC-32 - 36LA-UR-18-20247

Scaling – Limits & Metrics

Vector & Parallel Monte Carlo AMC-32 - 37LA-UR-18-20247

Vector & Parallel MC

Vector & Parallel Monte Carlo AMC-32 - 38LA-UR-18-20247

Conclusions

Vector & Parallel Monte Carlo AMC-32 - 39LA-UR-18-20247

Conclusions

Vector & Parallel Monte Carlo AMC-32 - 40LA-UR-18-20247

Challenges

Optimizing Monte Carlo Calculations AMC-33 - 1LA-UR-18-20247

Forrest B. Brown

National Laboratory Professor, UNM-NE
Senior R&D Scientist, Monte Carlo, LANL

Optimizing
Monte Carlo
Calculations

Advanced
Computational

Methods for
Monte Carlo
Calculations

Optimizing Monte Carlo Calculations AMC-33 - 2LA-UR-18-20247

Abstract

Optimizing Monte Carlo Calculations
Forrest Brown, XCP-3, LANL

Improving the performance of a large, complex, production-quality Monte Carlo code is difficult
due to the multitude of features and historical constraints. Experienced Monte Carlo code
developers recognize that classic optimization techniques applied to code “hot-spots” may result
in 20-30% speedups, while very much larger code speedups are possible from improved
algorithms.

This talk reviews the initial performance improvements to MCNP6.1 (2013) that were incorporated
into MCNP6.1.1 (2014). The improvements included both classic code optimizations and new
algorithms. Testing on a variety of problems demonstrated that the performance improvements
were effective, yielding speedups by factors of 1.2x - 4x, depending on the type of problem. For
criticality problems, speedups were 1.5x - 1.7x.

For many applications, improved algorithms are required to prepare for the new architectures
expected from exascale systems in the next 5-10 years. Much more work is planned as part of the
MCNP 2020 initiative for improving MCNP6 performance, structure, parallelism, and algorithms.

Optimizing Monte Carlo Calculations AMC-33 - 3LA-UR-18-20247

Outline
• Introduction

– MC darts
– Monte Carlo & computer history
– MCNP 2020 & Parallelism

• Classic Code Optimization
– Traditional vs MC codes
– Performance benchmarks
– Classic optimization

• Compiler options
• Strided array ops
• Inlining & guards
• Storage allocation

• Algorithms
– Hash-based energy lookup algorithm
– Sparse storage for the fission matrix
– Fission bank reordering
– Random sampling algorithms
– Parallel Monte Carlo

• Conclusions

Optimizing Monte Carlo Calculations AMC-33 - 4LA-UR-18-20247

Introduction

Optimizing Monte Carlo Calculations AMC-33 - 5LA-UR-18-20247

• Darts game

Throw darts at a square:
• Sample x & y randomly on (-1,1)
• If x2 + y2 < 1, tally a hit

π ~ 4 * [# hits] / [# tries]

• The Monte Carlo "darts" game has been played on some of the biggest
and fastest computers around, and has been an informal measure of
computer speed. For example,
– Los Alamos in 1981 stated that 400,000 darts/sec could be thrown on

the Cray-1 computer
– The challenge to throw darts faster was taken up by F. Brown (KAPL) &

W. Martin (Univ. Michigan):
• 10,000,000 darts/sec on the Cyber 205 (vector supercomputer)
• 1 dart/sec on the HP-11C hand calculator.

Monte Carlo Darts Game (1)

-1 1
-1

1

Optimizing Monte Carlo Calculations AMC-33 - 6LA-UR-18-20247

Monte Carlo Darts Game (2)
Year/Place Machine Darts / sec

1981 LANL CDC-7600 0.18 M
1981 LANL Cray-1 0.40 M
1982 Mich HP-11C 1
1982 Mich Apple II+ 34
1982 Mich Amdahl 470V/8 0.17 M
1982 KAPL Cyber-205, scalar 0.74 M
1982 KAPL Cyber-205, vector 9.83 M
1999 Mich 233 M PC 0.20 M
1999 Mich 100 M PC 0.07 M
1999 Mich 200 M Pentium, Matlab 446
2002 Mich 900 M P3, Matlab 0.35 M
2002 Mich 900 M P3, Matlab, vec 1.25 M
2002 LANL 1.2 G P3 11 M
2005 LANL 1.0 G P3 19 M
2005 LANL 2.0 G AMD Opteron 24 M
2005 LANL 1.7 G PowerPC G4 32 M
2005 LANL 1.2 G Alpha EV68 101 M
2005 LANL 2.6 G PowerPC G5 140 M

Note that CPUs, architecture, and compilers all change over time, so that CPU clock speed is not always a good
measure of the performance of an application code. This particular comparison is sensitive to 64-bit integer
operations (CPU & compiler) and is not necessarily a good predictor of overall Monte Carlo code performance.

Year/Place Machine Darts / sec

2010 LANL 2.6 G i7 2-core, Matlab 0.8 M
2010 LANL 2.6 G i7 2-core 124 M
2010 LANL 2.6 G i7 2-core *** 410 M
2010 LANL 3.0 G 2 Xeon 4-core, 1 thread *** 189 M
2010 LANL 3.0 G 2 Xeon 4-core, 8-thread *** 1460 M
2011 Mich Linux cluster, MPI, 32 cpu 2000 M
2013 LANL 3.0 G i7 2-core 2-HT 142 M
2013 LANL 3.0 G i7 2-core 2-HT, 1 thread *** 518 M
2013 LANL 3.0 G i7 2-core 2-HT, 2 threads *** 920 M
2013 LANL 3.0 G i7 2-core 2-HT, 4 threads *** 1025 M
2014 LANL 2.4 G 2 i7 4-core, 2-HT, 1 threads *** 194 M
2014 LANL 2.4 G 2 i7 4-core, 2-HT, 8 threads *** 1448 M
2014 LANL 2.4 G 2 i7 4-core, 2-HT, 16 threads *** 2037 M
2014 LANL 2.7 G Xeon 12-core, 2-HT, 12 thrd *** 2670 M
2014 LANL 2.7 G Xeon 12-core, 2-HT, 24 thrd *** 4000 M
2016 LANL 2.7 G Xeon 12-core, 2-HT, 24 thrd *** 5800 M
*** = hand-tuned, highly optimized

M = MHz, clock speed HT = hyperthreads / core
G = GHz, clock speed Fortran, a few Matlab

Optimizing Monte Carlo Calculations AMC-33 - 7LA-UR-18-20247

Monte Carlo Darts Game (3)

2.66 GHz Intel Core i7, 64-bit, MacBook Pro (2010)
Straightforward coding 124 M darts/sec
Hand tuned 410 M

2.7 GHz Intel Xeon, 12-core, 2 hyperthreads/core, 64-bit, Mac Pro (2014)
Hand tuned, 24 threads 4000 M

For darts: Mac Pro 2014 ~ 10,000x Cray-1
~ 4 x 109 Bill + HP-11c
~ world pop. + HP-11c

Optimizing Monte Carlo Calculations AMC-33 - 8LA-UR-18-20247

MCNP 2020

• MCNP6.1
– Preserves old capabilities
– Many new capabilities
– RSICC release - July 2013

• Status
– Last few years – focus on features,

merger, testing, release
– Slower, by 30-500 %

• Path forward – MCNP 2020
– Concerted effort to modernize the

codebase, upgrade foundations
– Goals: faster, sustainable, flexible
– Necessary for MCNP to survive into

the 2020’s & new computers
– Proposed joint support by

DOE-ASC & DOE-NCSP
• Experienced Lead
• 2-3 core developers

MCNP 2020
• Improve performance

– Goal: 2X speedup within 2 years

• Upgrade core MCNP6 software
– Restructure, clean up coding, Fortran

2003 & C/C++ standards
– Reorganize data structures
– Evolution, not revolution
– Reduce future costs for new

development & maintenance
– Goal: sustainable code

• Prepare for future
– New computers – massive parallel,

but less memory per core
– Improve MPI & thread parallelism
– Goal: flexible, adaptable code

Optimizing Monte Carlo Calculations AMC-33 - 9LA-UR-18-20247

MCNP 2020 - Performance Improvements
• Initial 3-month effort, focus on speedup & optimization

– Focus on neutron criticality problems common to ASC & NCSP applications
– Speedups from recent performance improvements

Performance Test Set
Criticality Other
ks1 1.76 void1 3.03
ks2 2.13 void2 4.11
ks3 1.35 void2 4.11
ks4 1.36 void3 2.72
baw1 2.19 det1 1.67
baw2 1.59 med1 1.15
fvf 2.04 pht1 1.22
g1 1.14
g2 2.20
pin 1.73

VALIDATION_CRITICALITY Suite
Measured wall-clock times, including data I/O:

mcnp5 release 34.7 min
mcnp6.1 release 43.9 min
mcnp6.1.1 NEW 27.9 min

➜ 1.57 X speedup over mcnp6.1
➜ 1.24 X speedup over mcnp5

Performance Benchmark Suite
Speedups vs MCNP6.1 Release

Neutron Problems Speedup
BAWXI2 4.37
GODIVA 1.05
Mode n in air w 750,000 tally bins 1.18
Well log problem 1.91
100M lattice cells in void 5.17

Other
mode p e in air 1.01
mode n p e in air 1.05
mode p in air 1.20
Pulse height tally 1.20
Radiography 1.07

Optimizing Monte Carlo Calculations AMC-33 - 10LA-UR-18-20247

Parallel
Monte Carlo

Optimizing Monte Carlo Calculations AMC-33 - 11LA-UR-18-20247

Computing - Latency & Threading

• Hardware - Moore’s Law
– Before 2000: 2X cpu speed every 18 months
– After 2000: more cpu-cores per chip, not faster cpus
– Today, hardware speed gains come from parallelism

• Fast, multicore cpus
– Need more data & need it faster
– Data transfer speed from memory to CPU has not kept up
– Today, data access & latency are biggest concerns

• Dealing with latency:
– Hardware -- cache, out-of-order execution, multicore, GPUs
– Algorithms -- High-level, data order & layout, vectorization, threading
– Important to match algorithms & hardware

• Most large computer systems today are clusters
– Many nodes: fiber network interconnect
– Multicore cpus: share memory within each node
– Hierarchical parallelism for Monte Carlo

Optimizing Monte Carlo Calculations AMC-33 - 12LA-UR-18-20247

MCNP – Hierarchical Parallelism – Since 2000
Concurrent Jobs ➜

Parallel Processes

– Total processes = (# jobs) x (# MPI processes) x (# threads)

– Tradeoffs:
• More MPI processes - lots more memory & messages
• More threads - contention from lock/unlock shared memory
• More jobs - system complexity, combining results

Master

Slave SlaveSlave

HistoryHistory HistoryHistory HistoryHistory

MESSAGE-PASSING

THREADS THREADS THREADS

Master

Slave SlaveSlave

HistoryHistory HistoryHistory HistoryHistory

MESSAGE-PASSING

THREADS THREADS THREADS

Optimizing Monte Carlo Calculations AMC-33 - 13LA-UR-18-20247

Parallel Monte Carlo - Future

• Particle parallelism + data decomposition -- logical view:

• Mapping of logical processes onto compute nodes is flexible:
– Could map particle & data processes to different or same compute nodes
– Lightweight – particles, heavy-weight – data & tallies
– Heterogeneous nodes – range of memory, speed, parallelism, etc.

Data
Node

Data
Node

Data
Node

Parallel
Calculation

Data Layer
(tally servers, etc.)

Particle
Node

Particle
Node

Particle
Node

Particle
Node

Particle
Node

Master
Process

Optimizing Monte Carlo Calculations AMC-33 - 14LA-UR-18-20247

Classic Code Optimization
• Traditional vs MC codes
• Performance benchmarks
• Classic Optimization

- Compiler options
- Fix strided array ops
- Inlining & guards
- Storage allocation

Optimizing Monte Carlo Calculations AMC-33 - 15LA-UR-18-20247

Traditional vs. MC - Code Optimization (1)

• Traditional:
Use performance tools to find "hot spots" in code execution

• Apply classic techniques to optimize coding in hot spots
– In-line functions
– Unroll loops
– Eliminate unnecessary work (hoist invariants outside loops)
– Bottom load, top store for loops
– Vector ops on contiguous data (stride 1)
– Rearrange storage or loops for contiguous vector ops
– Etc., etc., etc.

• For traditional codes (especially mesh-based PDE solvers),
focus is typically inner loops in solvers & the floating-point
arithmetic
– Optimizing data structures & loops can lead to high fractions of overall

processor peak speeds

Optimizing Monte Carlo Calculations AMC-33 - 16LA-UR-18-20247

Traditional vs. MC - Code Optimization (2)
• Breakdown of computer operations for typical large, general-purpose

Monte Carlo code (approximate)

40% - indexing, integer ops, memory access
30% - test-and-branch
25% - arithmetic
5% - RN generation & sampling, 64-bit integers

• MC code performance vs. computer hardware
– Memory access is largely random

• Little cache-coherency - only small gain from larger cache
• Memory speed is important

– CPU-intensive, but not floating-point
• Big gains from multiple integer/logical functional units
• Smaller gains from multiple floating-point units

– Compiler optimizations are critical
• Test-and-branch operations, indexing, prefetching

• MC codes have no hot spots – ops are spread across 100s of routines
– Outer loop over particles, random ops for particles, no inner loops
– Many traditional coding optimization techniques do not apply

Optimizing Monte Carlo Calculations AMC-33 - 17LA-UR-18-20247

• M.C. codes have many levels of indirection for memory access

• Each level of indirection:
– Integer ops for indexing
– Irregular memory access
– Cache-misses
– Inhibits pre-fetching, compiler optimization, & vectorization

mat = mat_in_cell(cell)

iso = iso_in_mat(i, mat)

cell

k = energy_bin_table_search(E, Eiso(1,iso))

sigt = sigt
+ den*[(1-de)*sigt_iso(k,iso) + de*sigt_iso(k+1,iso)]

Traditional vs. MC - Code Optimization (3)

Optimizing Monte Carlo Calculations AMC-33 - 18LA-UR-18-20247

Traditional vs. MC - Code Optimization (4)

Conditionals

• Traditional codes
– Vectorizable loops inside a conditional
– 1 conditional, to skip many ops

if(using_some_option) then
do k = 1, big_number

...vectorizable coding
enddo

endif

• Monte Carlo
– Outer loop over particles, inner coding

is scalar (threadable)
– Many conditionals, to skip a few ops
– 1/3 of statements are conditionals, rare

options can have significant cost

do k = 1, big_number
if(using_some_option) then

...scalar coding
endif

enddo

Functions

• Traditional codes
– One function call, vector ops
– Often call, then return if not needed
– Almost no-cost if immediate return

call some_option(...vectors)

• Monte Carlo
– Many function calls, scalar ops
– Significant cost to call if not needed

do k = 1, big_number
call some_option(...scalars)

enddo

Optimizing Monte Carlo Calculations AMC-33 - 19LA-UR-18-20247

Traditional vs. MC - Code Optimization (5)

• These software practices are bad inside Monte Carlo histories:
– Assuming that the compiler will inline functions

• No inlining is done for the safe optimization level used for mcnp

– Using accessor functions to determine if an option is in effect
• Requires an external call, invoked very many times

– Calling an unneeded routine, even if it exits immediately
• Requires an external call, invoked very many times

– Eliminating goto statements by pushing coding into a subroutine
• Requires an external call, invoked very many times

– Adding extra levels of looping just to avoid goto’s for very rare cases
• Extra overhead on all particles; less understandable code

– Heavy use of loop constructs cycle & exit is as bad as goto’s
• Obscures code flow & logic

– Obsession with removing goto’s
• They have their place in MC, more so than in other types of algorithm

2013-09-11

Optimizing Monte Carlo Calculations AMC-33 - 20LA-UR-18-20247

Traditional vs. MC - Code Optimization (6)

What classic optimizations work for MC ?

• Eliminate unneeded work, wherever possible

• Replace any code constructs that require temporary storage
(eg, noncontiguous array ops, character manipulation, …)

• Replace calls to accessor functions by direct inline access

• Put if-tests for options inline, not in external routines

• Put (short) functions inline, not in external modules

Optimizing Monte Carlo Calculations AMC-33 - 21LA-UR-18-20247

Performance Benchmarks

All tests run on Mac Pro, 3.0 GHz Xeon, 2 quad-cores using 8 threads. For criticality problems
results are neutrons/hr; for fixed-source problems results total wall time. ENDF/B-VII.1; Only
discrete S(a,b) was used.

CRITICALITY PROBLEMS
ks1.txt 3D PWR, OECD perf. bench., Kord Smith, 60 isotopes, no tallies
ks2.txt ks1.txt, 10 isotopes, no tallies
ks3.txt ks1.txt, 10 isotopes, fmesh tallies
ks4.txt ks1.txt, 60 isotopes, fmesh tallies
baw1.txt BAWXI2 ICSBEP problem, 31 isotopes, no tallies
baw2.txt BAWXI2 ICSBEP problem, 31 isotopes, fmesh tallies
fvf.txt fuel storage vault, from OECD convergence bencharks
g1.txt Godiva problem, 3 isotopes
g2.txt Godiva problem, 423 isotopes
pin.txt AECL pin cell, with FPs, 147 isotopes

FIXED-SOURCE PROBLEMS
void1.txt ks1.txt, with VOID card & no tallies
void2.txt baw1.txt, with VOID card & no tallies
void3.txt fvf.txt, with VOID card & no tallies
det1.txt 3D porosity tool, Reg. problem 12, neutrons, weight windows, F4 tallies
med1.txta medical physics, modified 3D Zubal head, photons
pht1.txt PHTVR cylindrical test problem, photons

2013-09-11

Optimizing Monte Carlo Calculations AMC-33 - 22LA-UR-18-20247

Classic Optimization - Compiler Options (1)

Try different compiler optimization levels

Test case:
– BAWXI2 criticality benchmark, endf-7.0, 250 cycles, 5K neuts/cycle
– Mac OS X, Intel-12, 8 threads

Results:
compile options neutrons/hr relative speed

MCNP5, RSICC version
-O1 86 M 1.0

MCNP6.1, RSICC version
-O1 58 M .67
-O2 57 M .66
-O3 57 M .66

➜ No gains from higher compiler optimization level (-O1, -O2, -O3)
(Some other test problems segfault for –O2, -O3)

2013-07-24

Optimizing Monte Carlo Calculations AMC-33 - 23LA-UR-18-20247

Classic Optimization - Compiler Options (2)

Try different heap-array allocation for temporary storage

Test case:
– BAWXI2 criticality benchmark, endf-7.0, 250 cycles, 5K neuts/cycle
– Mac OS X, Intel-12, 8 threads

Results:
compile options neutrons/hr relative speed

MCNP5, RSICC version
-O1 -heap-arrays 1024 86 M 1.0

MCNP6.1, RSICC version
-O1 -heap-arrays 1024 37 M .43
-O1 -heap-arrays 16384 39 M .46
-O1 -heap-arrays 1048576 38 M .45

➜ No gains from larger heap-array allocation
(Some other test problems segfault if heap-array allocation not used)

2013-07-24

Optimizing Monte Carlo Calculations AMC-33 - 24LA-UR-18-20247

Classic Optimization – Inlining Functions

Modifications to original mcnp6.1:

• Inline binary searches in neutron
problems for cross-section data,
tallies, etc.

• Eliminate unnecessary calls to
external routines, using extra logical
variables for global options

• Inline external routines for neutron
problems, ~10 routines in collision
physics

➜ Roughly 5-15% gain in overall code
speed due to moderate inlining

speedup
due to inlining

KCODE
ks1 1.34
ks2 1.16
ks3 1.11
ks4 1.11
baw1 1.09
baw2 1.07
fvf 1.09
g1 1.00
g2 1.14
pin 1.05

FIXED-SOURCE
void1 1.04
void2 1.05
void3 0.96
det1 1.08
med1 0.99
pht1 1.05

All problems run on Mac Pro (3 GHz
Xeon) with 8 threads, Intel 12.0

Optimizing Monte Carlo Calculations AMC-33 - 25LA-UR-18-20247

Classic Optimization – Storage Allocation

Fortran Common Blocks & Threading
Performance
• In MCNP6.1, each thread-private

variable used in particle tracking
was individually & explicitly
declared to be THREADPRIVATE.
COMMON blocks were not used.

• In MCNP6.1.1, all thread-private
variables used in particle tracking
were placed in COMMON blocks &
only the COMMON block names are
declared THREADPRIVATE

➜ Roughly 5-20% gain in overall code
speed due to changes in thread-
private declaration

– Very compiler-dependent
– Apparently more addressing ops needed when each

variable declared separately

speedup due to
thread-private

COMMON

KCODE
ks1.txt 1.12
ks2.txt 1.17
ks3.txt 1.12
ks4.txt 1.06
baw1.txt 1.28
baw2.txt 1.18
fvf.txt 1.31
g1.txt 1.09
g2.txt 1.02
pin.txt 1.07

FIXED-SOURCE
void1.txt 1.08
void2.txt 1.03
void3.txt 1.08
det1.txt 1.24
med1.txt 1.00
pht1.txt 1.12

All problems run on Mac Pro (3 GHz
Xeon) with 8 threads, Intel 12.0

Optimizing Monte Carlo Calculations AMC-33 - 26LA-UR-18-20247

Classic Optimization – Combined Gains
Overall speedup

vs mcnp6.1

KCODE
ks1 1.44
ks2 2.11
ks3 1.34
ks4 1.23
baw1 1.87
baw2 1.43
fvf 1.97
g1 1.17
g2 1.19
pin 1.19

FIXED-SOURCE
void1 2.96
void2 4.02
void3 2.71
det1 1.59
med1 1.07
pht1 1.21

All problems run on Mac Pro (3 GHz
Xeon) with 8 threads, Intel 12.0

• Overall speedups due to recent
coding optimization

Modifications:
– Compiler options
– Fix strided array ops
– Inlining & guards
– thread-private common

• Comments
– Focus for classic optimizations was

neutron criticality problems

– Classic optimizations focused on coding,
not algorithms

– Many more improvements could be made

– Effort only required ~2 months, hardest
part was testing on a variety of problems

Optimizing Monte Carlo Calculations AMC-33 - 27LA-UR-18-20247

Algorithms
• Coding optimizations are easy, but provide only limited speedups.
• Speedups from code optimization are often compiler-dependent &

need to be revisited when new compilers are used.

• The biggest gains always come from new algorithms.

• New algorithms are needed for the coming new computer
architectures: cpu + mic + gpu, billions of cores, limited
memory

Optimizing Monte Carlo Calculations AMC-33 - 28LA-UR-18-20247

Hash-based Energy
Lookup Algorithm

Optimizing Monte Carlo Calculations AMC-33 - 29LA-UR-18-20247

Hash-based Energy Lookup – Background (1)

• Cross-section data are stored as piecewise linear functions of E

– Typical σ (E) vs E

• Usually stored as linear arrays:
N = number of entries
E(1..N) = array of E values = (E1, E2, …, EN)
σ(1..N) = array of σ values = (σ1, σ2, …, σN)

• Two steps are required to lookup & use the data:
1. Given E, search the E() array to find interval k containing E (1≤ k ≤ N-1)
2. Interpolate linearly between Ek & Ek+1

E1 E9E8E7E6E5E4E3E2

σ(E)

σ1

σ2

σ3
σ4 σ5

σ6 σ7 σ8 σ9

σ (E) =σ k +
E − Ek

Ek+1 − Ek

⎛
⎝⎜

⎞
⎠⎟
⋅ σ k+1 −σ k(), Ek ≤ E ≤ Ek+1

Optimizing Monte Carlo Calculations AMC-33 - 30LA-UR-18-20247

Hash-based Energy Lookup – Background (2)

• After a collision (before a flight) or entering new material
– Must look up & interpolate σT for the neutron energy E,

for each nuclide in a material
– The σT's are used to determine ΣT for the material
– ΣT is then used in randomly sampling of distance to collision

For U235, U238, O16, … (fuel material)

. Search the array of energies for the nuclide, find interval k containing E

. Interpolate σT for nuclide at energy E

. Accumulate NσT for nuclide into overall material ΣT

. . .

Similar {search, interpolate, accumulate} for scatter, absorption, fission, …

• This set of operations {search, interpolate, accumulate} often
consumes 1/3 – 2/3 of the overall time in neutron transport MC

Optimizing Monte Carlo Calculations AMC-33 - 31LA-UR-18-20247

Hash-based Energy Lookup – Background (3)

• There is extensive literature on search algorithms
– D.E. Knuth, The Art of Computer Programming Vol 3 - Sorting &

Searching
– Many other references - books & journals

• For general Monte Carlo codes, the commonly-used methods are
linear search &/or binary search of the cross-section energy
tables
– Need 1 table search for each of the nuclides in a material

– Linear search takes O(N) time, best when N ~ 10 or less
– Binary search takes O(ln N) time, best when N ~ large

• To reduce the time needed for the table searches for cross-section
data, several unified energy grid schemes were used in the past
– Map the data for every nuclide in the problem onto 1 energy grid
– Requires only 1 energy table search, rather than 1 table search for

every nuclide in a material
– Can be 10-100x faster for energy lookups

Optimizing Monte Carlo Calculations AMC-33 - 32LA-UR-18-20247

Hash-based Energy Lookup – Background (4)
Unified Energy Grid Schemes
• Scheme 1 – very old (racer, rcp, o5r, …)

– Used in the 1960s – 1980s due to memory limitations
– Typically 104 – 105 energy bins (supergrouped)
– Map all xsec data to these bins
– Approximate, required weighting functions

• Scheme 2 – unified grid (psg, serpent, …)
– Combine all xsec energy grids, including all energy points
– Expand all xsec data onto unified grid
– Exact, but required very large amounts of memory

• Scheme 3 – unified grid with pointers (serpent, …)
– Combine all xsec energy grids, including all energy points
– For each unified grid bin, store pointers to bins in each nuclide xsec

data set
– Exact, retains original nuclide xsec data
– Extra storage for unified grid & nuclide pointers
– Requires only 1 table search, then (indirect) lookups in nuclide tables

• Scheme 4 – NEW, current hash-based energy lookup
(mcnp611)

Optimizing Monte Carlo Calculations AMC-33 - 33LA-UR-18-20247

Hash-based Energy Lookup – Background (5)

Unified Energy Grid Schemes – Memory Storage
nuclides E pts ACE xs Ugrid+xs Ugrid+ptrs NEW

K Smith bench 64 .73 M .12 GB 1.5 GB .38 GB 2.2 MB

Rx pin, 1 temp 77 .66 M .12 GB 1.6 GB .41 GB 2.6 MB

Rx pin, 2 temps 145 1.2 M .24 GB 5.6 GB 1.4 GB 4.8 MB

Rx pin, 5 temps 349 2.8 M .55 GB 31 GB 7.8 GB 12 MB

All nucs, 1 temp 423 2.6 M .58 GB 36 GB 9.0 GB 14 MB

ACE xs = actual memory for ACE data in mcnp611
E pts = total energy points, summed over all ACE nucs = pts in Ugrid

Ugrid+xs = extra storage for unified E-grid + {σT, σA, σE, heating } at each E & nuc
Ugrid+ptrs = extra storage for unified E-grid + pointers to nuc xsecs at each E & nuc
NEW = extra storage for current hash-based lookup, with 8192 ubins

Optimizing Monte Carlo Calculations AMC-33 - 34LA-UR-18-20247

Hash-based Energy Lookup – New (1)

• History
– Suggested by George Zimmerman (LLNL, ret.) in 2013
– Used for lattice physics code (Dave Austin) in ~1989, and in several

variations in RACER MC (Brown) in 1980s
– Certainly much older

• Recent
– Zimmerman, in proprietary code mods, 2013
– Brown, stand-alone & in mcnp6.1.1b, 2013-2014

• Basic idea
Retain all mcnp6 machinery for energy lookups &
forming the total cross-section, but

➜ use a physics-based hash scheme to greatly narrow
the bounds for each binary search of nuclide E tables

➜ Minimal mcnp6 code changes, but significant speedups

➜ Modest memory storage, much less than unified grids

Optimizing Monte Carlo Calculations AMC-33 - 35LA-UR-18-20247

Hash-based Energy Lookup – New (2)

• The setup portion of the algorithm, performed prior to neutron
random walks, involves the following steps:

1. Determine Emin and Emax energy bounds for the problem
• Check Emax & Emin for all nuclide ACE datasets in the problem

2. Setup the "ugrid" for the hashing function
• Ugrid: uniform spacing in ln(E) between Emin and Emax
• M: number of bins in ugrid().
• No need to store ugrid() -- just store M, Emin, Emax
• mcnp611: M = 8192, reasonable speed/storage tradeoff

3. Setup nuclide search bounds for each ubin index
• For each bin in ugrid, lookup & store for each nuclide the

bounding indexes k1(u,n) and k2(u,n) in the ACE energy table for
that nuclide (n= nuclide index, N= no. nuclides, u= index in ugrid)

• Only need store k1(u,n), since k2(u,n) = k1(u+1,n)+1
• Total extra storage = (M+1)∙N∙4 bytes (int4 sufficient for ACE data)

Note: The above steps do NOT involve any approximations

Optimizing Monte Carlo Calculations AMC-33 - 36LA-UR-18-20247

Hash-based Energy Lookup – New (3)

• During random walk simulation, after particle energy change or
when entering new material

Defining umin= log Emin, umax= log Emax, du = M / (umax - umin)

New algorithm for energy lookups for neutron energy E is:

u = 1 + ⎣ du ∙ (logE – umin) ⎦, ⎣ ⎦ is truncation to the next lowest integer

For each nuclide n:
search its energy table between entries k1(u,n) & k2 =k1(u+1,n)+1

E
Compute u.
Get k1, k2

for each n
as needed.

⦁
⦁
⦁
⦁
⦁
⦁
⦁

⦁
⦁
⦁
⦁
⦁
⦁
⦁
⦁
⦁
⦁
⦁
⦁
⦁

⦁
⦁
⦁
⦁
⦁
⦁

Nuclide 1

Nuclide 2

Nuclide N

k2

k1

k2

k1
k2

k1

Optimizing Monte Carlo Calculations AMC-33 - 37LA-UR-18-20247

Hash-based Energy Lookup – New (4)

• Memory storage
– ugrid is completely defined by M, Emin , Emax -- need not be stored
– Because k2(u,n) = k1(u+1,n)+1, the k2(u,n) values need not be stored
– Total additional memory storage = (M+1)∙N∙4 bytes
– More compact memory use, so more cache-friendly

• Speed/space tradeoff
– Larger M gives improved speed, but dependence is weak for M >1000
– Smaller M reduces speedup but also reduces memory requirements.

• Choice of M does not in any way affect accuracy of the xsec data
• k1 and k2 indexes for each nuclide for each of the ugrid bins

– Bounds for performing ordinary binary searches in the nuclide ACE
– These bounds narrow the range of the binary searches, so that only a

small portion of each nuclide energy table need be searched
– Frequently the search range in the nuclide energy tables is < 8.

For such small ranges, a simple linear search will be slightly faster than
a binary search & may provide additional small speedups

Optimizing Monte Carlo Calculations AMC-33 - 38LA-UR-18-20247

Hash-based Energy Lookup – Testing (1)

• Stand-alone coding to compare 3 methods:
1. Standard MCNP6.1 with external function for binary searches
2. Standard MCNP5 with inline coding for binary searches
3. New hash-based scheme with inline binary searches.

• ACE datasets
– The energy tables for 9 nuclides from the ENDF/B-VII.1 nuclear data

libraries were used in the comparisons:
1001.80c, 8016.80c, 26056.80c, 92235.80c,

92238.80c, 94239.80c, 94240.80c, 94241.80c, 6000.80c.
– These nuclides had energy table sizes ranging from 590 to 157,744

bins.

• For each energy lookup scheme, many millions of neutron
energies were randomly sampled in the ugrid range, and then the
energy lookups were performed for all 9 nuclides. Overall timing
results are averages for the set of nuclides.

Optimizing Monte Carlo Calculations AMC-33 - 39LA-UR-18-20247

Hash-based Energy Lookup – Testing (2)

• Timing results for stand-alone test of energy lookup methods.
Results are the average time for each energy lookup

• Inlining binary searches
gives 10-20% speedup
(mcnp5 vs mcnp6.1)

• New hash-based scheme
gives 15-20x speedup

• M = 8192 used for table

• Lookup time for other M on
MacBook

M = 64 k 2 ns
M = 32 k 2 ns
M = 16 k 2 ns
M = 8 k 3 ns
M = 4 k 3 ns
M = 1 k 5 ns

• Mixed binary/linear search
(break at 8) did not improve
speedup

Optimizing Monte Carlo Calculations AMC-33 - 40LA-UR-18-20247

Hash-based Energy Lookup – Testing (3)

• MCNP6.1 (2013) runs significantly slower than MCNP5
– Slowdowns are problem-dependent, 20% to 5x slower

• MCNP6.1.1 (2014)
– Significant classic optimizations performed

Inline functions, eliminate non-unit-stride vector ops, if-guards, …
– New hash-based energy lookup scheme
– Measured timing results for new energy lookup scheme compare

mcnp6.1.1 before & after new scheme, with all other optimizations
the same

• New energy lookup scheme provides 1 – 1.9x speedup in overall
MCNP6.1.1 problem runtime (at least for neutron problems)

• MCNP6.1.1 is a lot faster than MCNP6.1
• MCNP6.1.1 is a little faster than MCNP5

Optimizing Monte Carlo Calculations AMC-33 - 41LA-UR-18-20247

Hash-based Energy Lookup – Testing (4)

• MCNP6.1.1 speedups due to new hash-based energy lookup
algorithm

• Speedup compares
mcnp6.1.1 before & after
new energy lookup scheme,
with no other changes

• M = 8192 used for table

• All runs performed on Mac
Pro (3 GHz, 2 quad-core)
with 8 mcnp6 threads, using
standard ENDF/B-VII data

Optimizing Monte Carlo Calculations AMC-33 - 42LA-UR-18-20247

Sparse Storage for
Fission Matrix Tallies

Optimizing Monte Carlo Calculations AMC-33 - 43LA-UR-18-20247

Fission Matrix for MCNP

• Exact integral equation for fission source

N = # spatial regions, F is NxN matrix

• FI,J = next-generation fission neutrons produced in region I,
for each fission neutron starting in region J (JàI)

– As region size decreases: S(r0) à SJ / VJ, discretization errors à 0
– Can accumulate tallies of FI,J even if not converged

• Similar analysis for adjoint source shows that

SI
†
I = 1

K ⋅ FI,J
† ⋅SJ

†
J

J=1

N

∑ , F† = FT

FI,J = d

!
r

!
r∈VI
∫ d

!
r0

!
r0∈VJ
∫

S(
!
r0)
SJ

⋅ dEdΩ̂dE0 dΩ̂0∫∫∫∫ ⋅ νΣF(
!
r,E)⋅ χ(E0)

4π
⋅G(
!
r0,E0,Ω̂0 →

!
r,E,Ω̂)

SJ = S(

!
′r)d
!
′r

!
′r ∈VJ
∫ = d

!
′r d ′E d ˆ ′Ω νΣF(

!
′r , ′E)Ψ(

!
′r , ′E , ˆ ′Ω)

!
′r ∈VJ
∫∫∫ ,

SI = 1
K ⋅ FI,J ⋅SJ

J=1

N

∑

Optimizing Monte Carlo Calculations AMC-33 - 44LA-UR-18-20247

Monte Carlo Estimation of Fission Matrix

Monte Carlo K-effective Calculation
1. Start with fission source & k-eff guess
2. Repeat until converged:

• Simulate neutrons in cycle
• Save fission sites for next cycle
• Calculate k-eff, renormalize source

3. Continue iterating & tally results

For Fission Matrix calculation
During standard k-eff calculation, at the end of each cycle:

• Estimate FI,J tallies from start & end points in fission bank (~ free)
• Accumulate FI,J tallies, over all cycles (even inactive cycles)

After Monte Carlo completed:
• Normalize FI,J accumulators, divide by total sources in J regions
• Find eigenvalues/vectors of F matrix (nonsymmetric eigensolver)

Optimizing Monte Carlo Calculations AMC-33 - 45LA-UR-18-20247

Fission Matrix – Sparse Structure

• For a spatial mesh with N regions, F matrix is N x N
– 100 x 100 x 100 mesh ➜ F is 106 x 106 ➜ 8 TB memory
– In the past, memory storage was always the major limitation for F

matrix

• Compressed row storage scheme
– Don’t store zero elements, general sparsity
– Reduced F matrix storage, no approximation
– Can easily do 100 x 100 x 100 mesh on 8 GB Mac

2D PWR
15x15x1 mesh

N = 225

2D PWR
30x30x1 mesh

N = 900

Optimizing Monte Carlo Calculations AMC-33 - 46LA-UR-18-20247

Fission Matrix – Sparse Storage

• Compressed Row Storage Scheme (CRS)
– General sparsity, no approximations or assumptions
– N = Nx x Ny x Nz mesh cells
– (iS , jS, kS) → (iT , jT, kT) ➜ J → I J = iS + (jS-1)Nx + (kS-1)NxNy

I = iT + (jT-1)Nx + (kT-1)NxNy
– Only the nonzero F(I,J) entries are stored.
– MC tallies: If element exists – add; if not – insert

– L(I) array entries point to the start of a list of J indices and
corresponding nonzero F(I,J) tallies

– Highly optimized tally coding, typically requires less than 1 second at the
end of each batch in the Monte Carlo simulation.

L1 L2 L3 . . . LN LN+1

J1 J2 J3 J4 J5 J6 J7 J8 J9 ... JM
R1 R2 R3 R4 R5 R6 R7 R8 R9 ... RM

Optimizing Monte Carlo Calculations AMC-33 - 47LA-UR-18-20247

Example – Sparse-Matrix * Vector

! multiply a fmat matrix times a vector, return result in y vector
type(fission_matrix), intent(in) :: fmat ! sparse fission matrix
real(R8), intent(in) :: x(:) ! vector in
real(R8), intent(out) :: y(:) ! vector out, result
integer(I8) :: k, i
real(R8) :: t

!$OMP PARALLEL DO PRIVATE(t, k) ß different thread for each row

do i = 1, fmat%n
t = 0.0d+00
do k = fmat%L(i), fmat%L(i+1)-1 ß k is location of J,R row data

t = t + fmat%R(k) * x(fmat%J(k))
enddo
y(i) = t

enddo
!$OMP END PARALLEL DO

Optimizing Monte Carlo Calculations AMC-33 - 48LA-UR-18-20247

Higher Eigenmode Analysis with the Fission Matrix

• Run Monte Carlo, get fission matrix,
then solve for eigenvalues & eigenfunctions:

– Matlab, if full-storage F matrix can fit in memory
– Power iteration with deflation, preserves sparse format
– Implicitly Restarted Arnoldi Method (IRAM), preserves sparse format

(thanks, Max & Colin)

F is nonsymmetric
Sn is a right eigenvector of F, S†

n is a left eigenvector of F
Sn and S†

m are biorthogonal

Sn = 1

Kn ⋅F ⋅

Sn k0 > k1 > k1 ... > kN

S†
n = 1

Kn ⋅F
T ⋅

S†
n n = 0,1,...N

(kp − kq) ⋅(

Sp ⋅

Sq
†) = 0

Optimizing Monte Carlo Calculations AMC-33 - 49LA-UR-18-20247

PWR – Source Eigenmodes for 120x120x1 Spatial Mesh

n Kn
0 1.29480
1 1.27664
2 1.27657
3 1.25476
4 1.24847
5 1.24075
6 1.22160
7 1.22141
8 1.19745
9 1.19743
10 1.18825
11 1.18305
12 1.15619
13 1.14633
14 1.14617
15 1.14584

Optimizing Monte Carlo Calculations AMC-33 - 50LA-UR-18-20247

PWR – with Perturbations

• Insert SS304 Control Rods in each assembly in quadrant of core

Fission Source
Eigenmodes

Original Perturbed

Original Perturbed

Optimizing Monte Carlo Calculations AMC-33 - 51LA-UR-18-20247

PWR - Convergence Acceleration Using Fission Matrix

• Fission matrix can be used to accelerate convergence of the
MCNP neutron source distribution during inactive cycles

• Requires only fundamental forward mode
• Very impressive convergence improvement

standard MC

standard MC

keff

Hsrc

accelerated using F matrix

accelerated using F matrix

Optimizing Monte Carlo Calculations AMC-33 - 52LA-UR-18-20247

Fission Bank
Reordering

Optimizing Monte Carlo Calculations AMC-33 - 53LA-UR-18-20247

Reproducibility & Threading

• For criticality problems with OpenMP threading, the
fission-bank fso() needs to be reordered into a unique
ordering that is independent of the number of threads or
MPI processes.

• This was previously done by very crude, inefficient
sorting, and did not scale well for large numbers of
neutrons/cycle.

Scaling ~ O(N2) N = neutrons/cycle

• A new routine was added, fso_reorder, to provide a
unique reordering of fso() WITHOUT SORTING. This is
based on:

FB Brown & TM Sutton, "Reproducibility and Monte
Carlo Eigenvalue Calculations", Trans Am Nuc Soc 65,
235 (1992)

Scaling ~ O(N) N = neutrons/cycle

Optimizing Monte Carlo Calculations AMC-33 - 54LA-UR-18-20247

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 2 4 6 8 10 12 14

neutrons/cycle (millions)

R
u

n
 T

im
e
 (

w
a
ll
-c

lo
c
k
 s

e
c
o

n
d

s
)

Timing Studies

— Standard MCNP5,
with fission-bank sorting

- - Sorting overhead

— New MCNP5, no sorting

PWR2D Model

• 1/4-core, detailed
geometry, ENDF/B-VII

• Mac Pro, 3 GHz, 2 quad-
core Xeon, 8 threads

• Identical results for old &
new reordering

• For >10M neuts/cycle, old
sorting took more time
than running neuts

• New scheme eliminates
this, scales

Optimizing Monte Carlo Calculations AMC-33 - 55LA-UR-18-20247

Random Sampling
Improvements

Optimizing Monte Carlo Calculations AMC-33 - 56LA-UR-18-20247

Sampling the Evaporation Spectrum

• During the analysis of neutron collisions in MCNP, one of the possible
Probability Density Functions (PDFs) for the outgoing neutron energy,
Eout, is an “evaporation spectrum” (ENDF Law 9) given by:

Where T and U are tabulated functions of Ein, and

• The sampling scheme used in MCNP since the 1970s is:

• This rejection scheme is extremely inefficient when (Ein-U)/T is small.

– With some ENDF/B-VII data, (Ein-U)/T is sometimes smaller than 0.1,
giving rise to rejection sampling efficiencies of 0.1 % or smaller

– For some problems, mcnp6 may get stuck in this rejection sampling loop for
minutes, hours, or even days.

f (Ein → Eout) = C ⋅Eout ⋅e
−Eout /T , 0 ≤ Eout ≤ Ein −U

C = T −2 ⋅[1− e−(Ein−U)/T ⋅(1+ Ein−U
T)]−1

Eout = −T ⋅ ln(ξ1ξ2), reject & repeat if Eout > Ein −U

Optimizing Monte Carlo Calculations AMC-33 - 57LA-UR-18-20247

New Sampling Scheme

• It can readily be shown that a
truncated Gamma PDF (the
evaporation spectrum) can be
efficiently sampled with a
rejection scheme based on
truncated exponentials:

• The efficiency of this rejection
scheme is always greater than 50%,
even for very small (Ein-U)/T . The
gains in sampling efficiency can be
very large, 1000x or more:

Let x = Eout /T , w = (Ein −U) /T ,
and g = 1− e−w . Then,
(1) !E = − ln(1− gξ)
(2) ! ′E = − ln(1− g ′ξ)
(3) x = !E + ′!E
(3) Reject & resample if x > w
(4) Eout = x ⋅T

(Ein – U) / T

Optimizing Monte Carlo Calculations AMC-33 - 58LA-UR-18-20247

Summary
&

Conclusions

Optimizing Monte Carlo Calculations AMC-33 - 59LA-UR-18-20247

Overall Performance Improvements

• Initial 3-month effort, focus on speedup & optimization
– Focus on neutron criticality problems common to ASC & NCSP applications
– Speedups from recent performance improvements

Performance Test Set
Criticality Other
ks1 1.76 void1 3.03
ks2 2.13 void2 4.11
ks3 1.35 void2 4.11
ks4 1.36 void3 2.72
baw1 2.19 det1 1.67
baw2 1.59 med1 1.15
fvf 2.04 pht1 1.22
g1 1.14
g2 2.20
pin 1.73

VALIDATION_CRITICALITY Suite
Measured wall-clock times, including data

I/O:
mcnp5 release 34.7 min
mcnp6.1 release 43.9 min
mcnp6.1.1 NEW 27.9 min
➜ 1.57 X speedup over mcnp6.1
➜ 1.24 X speedup over mcnp5

Performance Benchmark Suite
Speedups vs MCNP6.1 Release

Neutron Problems Speedup
BAWXI2 4.37
GODIVA 1.05
Mode n in air w 750,000 tally bins 1.18
Well log problem 1.91
100M lattice cells in void 5.17

Other
mode p e in air 1.01
mode n p e in air 1.05
mode p in air 1.20
Pulse height tally 1.20
Radiography 1.07

Optimizing Monte Carlo Calculations AMC-33 - 60LA-UR-18-20247

MC & Computing - Status

• Computers continue to evolve - speed & accessibility
– Everyone now has multicore, Gflop computers - laptops, deskside
– Almost everyone now has access to Linux clusters
– New computers will have 16, 32, 48, 64, 80, … cores per processor

• MC codes must evolve
– All MC codes - new & old - must be parallel, with threading + MPI
– Much larger problem sizes - millions of regions, materials, tallies

• Monte Carlo for the 2020s & beyond:
– Outstanding success to date, will continue
– More & more analysis will be done using Monte Carlo codes
– New physic methods, eliminate approximations
– Upgrade codes for huge problem sizes
– New parallel computing algorithms
– Improve robustness & ease-of-use

Optimizing Monte Carlo Calculations AMC-33 - 61LA-UR-18-20247

Acknowledgments & References

Acknowledments
• Discussions of Monte Carlo algorithms and coding with George Zimmerman were, as always,

stimulating and encouraging, and contributed significantly to the success of this work.
• This work was supported by the US DOE/NNSA Nuclear Criticality Safety Program and the

Advanced Simulation & Computing Program.

References
• F.B. Brown, B.C. Kiedrowski, J.S. Bull, "Verification of MCNP6.1 and MCNP6.1.1 for Criticality

Safety Applications," Los Alamos National Laboratory report, LA-UR-14-22480 (2014).
• Forrest Brown, Brian Kiedrowski, Jeffrey Bull, "MCNP5-1.60 Release Notes", Los Alamos

National Laboratory report, LA-UR-10-06235 (2010).
• J.T. Goorley, et al., "Initial MCNP6 Release Overview - MCNP6 version 1.0," Los Alamos

National Laboratory report, LA-UR-13-22934 (2013).
• J.R. Tramm & A.R. Siegel, “Memory Bottlenecks and Memory Contention in Multi-Core Monte

Carlo Transport Codes,” Proceedings of SNA+MC 2013, Paris, France Oct 27-31 (2013).
• F.B. Brown, "Present Status of Vectorized Monte Carlo," Trans. Am. Nucl. Soc. 55, 323 (1987).
• J. Leppänen, "Two practical methods for unionized energy grid construction in continuous-

energy Monte Carlo neutron transport calculation," Ann. Nucl. Energy, 36 (2009).
• J. Leppänen, A. Isotalo, "Burnup calculation methodology in the Serpent 2 Monte Carlo code,"

Proceedings of PHYSOR-2012, Knoxville, TN, Apr. 15-20 (2012).
• G. Zimmerman, private communication to F.B. Brown (2013).
• D. Austin, KAPL, private communication to F.B. Brown (~1989).

Optimizing Monte Carlo Calculations AMC-33 - 62LA-UR-18-20247

Optimizing Monte Carlo Calculations AMC-33 - 63LA-UR-18-20247

Optimizing Monte Carlo Calculations AMC-33 - 64LA-UR-18-20247

	Front
	References
	NE-515-006 Course Information
	AMC-10 Linear Boltzmann Transport Equation
	AMC-11 Adjoints & Green's Functions
	AMC-12 Fission Matrix Method
	AMC-13 Continuously Varying Materials & Tallies
	AMC-20 Random Number Generators & Testing
	AMC-21 Random Sampling
	AMC-22 Optimal Sampling from Piecewise Linear PDFs
	AMC-23 Permutations, Sets, Counting Sorts
	AMC-24 Ideas for New RNG
	AMC-30 MC Codes - Basic Structure & Algorithms
	AMC-31 Timing & Testing
	AMC-32 Vector & Parallel MC
	AMC-33 Optimizing MC Calculations

